Tanszéki szeminárium

  • 2018. május 18., péntek, 10 óra
    Dobi BalázsELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Markov chain-based cost-optimal control charts

    In an ear­li­er paper Zemp­lé­ni et al. (2004) int­ro­du­ced a Mar­kov cha­in-bas­ed met­hod for the eco­no­mi­cally op­ti­mal de­sign of Shew­hart-type cont­rol charts ori­gi­nat­ing from Dun­can’s cyc­le-bas­ed mo­del (1956).

    Cont­rol charts are tra­di­ti­o­nally used in in­dust­ri­al sta­tis­tics. We int­ro­du­ce a new app­ro­ach, which is su­i­tab­le for app­li­ca­tions in the he­alth­ca­re sec­tor. Most papers in this area use stan­dard pro­cess cont­rol charts only for qu­a­lity ass­u­rance (see e.g. Duc­los et al., 2009). We adapt the Mar­kov cha­in-bas­ed app­ro­ach and de­ve­lop a met­hod in which not only the shift (i.e. the deg­ra­da­ti­on of the pa­ti­ent’s he­alth) can be ran­dom, but the samp­ling in­ter­val (i.e. time bet­ween vi­sits) and the ef­fect of the re­pair (i.e. treat­ment) too. This means that we do not use the of­ten-pre­sent as­sumpt­ion of per­fect re­pair which is usu­ally not app­lic­ab­le for me­di­cal treat­ments. The aver­age cost of the op­ti­mal pro­to­col, which con­sists of the samp­ling fre­qu­ency (i.e. op­ti­mal fre­qu­ency of cont­rol vi­sits) and cont­rol li­mits (i.e. op­ti­mal me­di­cal cri­te­ria) can be est­ima­ted by the sta­ti­on­ary dis­t­ri­bu­ti­on of the Mar­kov cha­in.

    Zemp­lé­ni, A., Vé­ber, M., Du­ar­te, B. and Sa­ra­i­va, P. (2004) Cont­rol Charts: A cost-op­ti­mi­za­ti­on app­ro­ach for pro­ces­ses with ran­dom shifts. ASM­BI, 20, p.185-200.
    Dun­can, A. J. (1956). The Eco­no­mic De­sign of X Charts Used to Ma­in­ta­in Cur­rent Cont­rol of a Pro­cess. Jour­nal of the Ame­ri­can Sta­tis­ti­cal As­so­ci­a­ti­on, Vol. 51
    A. Duc­los, S. To­u­zet, P. So­ar­do, C. Co­lin, J. L. Peix, J. C. Li­fant (2009) Qu­a­lity mo­ni­tor­ing in thy­ro­id sur­gery us­ing the Shew­hart cont­rol chart. Bri­tish Jour­nal of Sur­gery, Vol. 96, Is­sue 2

  • 2018. május 25., péntek, 10 óra
    Komárik AndrásMorgan Stanley
    Corporate default modeling and asset correlations

    We bri­efly pre­sent a mul­ti-fac­tor Gaus­si­an co­pu­la port­fo­lio mo­del for cor­pora­te de­fa­ult risk. We mo­del the as­set va­lue of each com­pany with a sto­chas­tic pro­cess, whe­re the si­mu­la­ted as­set va­lues drive the pos­sib­le fu­tu­re de­fa­ults of the com­pa­ni­es. The mo­del as­su­mes th­ree types of sys­te­ma­tic fac­tors dri­ving the as­set va­lue of each com­pany. The­se fac­tors rep­re­sent the sta­te of the glo­bal eco­nomy and the eco­no­mic con­di­tions of dif­fe­rent geo­gra­phi­cal re­gions and in­dust­ri­es. The cor­res­pond­ing fac­tor load­ings play a key role in the mo­del, as they cap­tu­re the cor­re­la­ti­on struc­tu­re bet­ween the as­set re­turns of dif­fe­rent com­pa­ni­es and the­re­fo­re inf­lu­en­ce the jo­int pro­ba­bi­li­ti­es of de­fa­ult. Hig­her cor­re­la­ti­on bet­ween the as­set re­turns of dif­fe­rent com­pa­ni­es in a port­fo­lio inc­re­as­es the li­ke­li­ho­od that mul­tip­le com­pa­ni­es will de­fa­ult si­mul­ta­ne­o­usly, thus inc­re­a­sing the li­ke­li­ho­od of ext­re­me los­ses in the port­fo­lio. Hen­ce, acc­ura­tely me­a­suring the­se cor­re­la­tions is es­sen­ti­al for the iden­ti­fi­ca­ti­on of port­fo­lio risk.

    We descri­be a pos­sib­le met­ho­do­logy for me­a­suring the cor­re­la­tions bet­ween as­set re­turns of dif­fe­rent com­pa­ni­es, which can be used for ca­lib­rat­ing the cor­res­pond­ing fac­tor load­ings. The app­ro­ach re­li­es upon sing­le-name CDS spre­ad data. We will also bri­efly analy­ze the struc­tu­re of cor­re­la­tions ob­ta­ined us­ing this met­ho­do­logy.

  • 2018. június 1., péntek, 10 óra
    Hijazi AymanELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Estimation of chronic disease progression parameters

    An in­di­vi­du­al who is sus­cep­tib­le to a ch­ro­nic di­se­a­se na­tu­rally prog­res­ses from be­ing di­se­a­se free to be­ing asymp­to­ma­tic (prec­li­ni­cal) [1]. This prog­r­es­si­on is mo­deled [2] by as­sum­ing that the time spent in the di­se­a­se free and the asymp­to­ma­tic sta­tes are ran­dom va­ri­a­b­les fol­lo­wing spe­ci­fi­ed dis­t­ri­bu­tions. Early de­tec­ti­on may oc­cur if scre­e­ning ta­kes place be­fo­re the de­ve­lop­ment of symp­toms. The pa­ra­me­ters to be est­ima­ted are tho­se re­gard­ing sen­sit­i­vity of scre­e­ning, the prec­li­ni­cal in­ten­sity (the pro­ba­bi­lity of the di­se­a­se to on­set in gi­ven short time in­ter­val) and the time spent in the prec­li­ni­cal sta­te.

    To get data is hard and costly in such me­di­cal sce­na­ri­os, so we built a si­mu­la­tor to check the pro­po­s­ed est­ima­ti­on met­hods, bas­ed on gi­ven dis­t­ri­bu­tions. We also gave con­fi­den­ce in­ter­vals for est­ima­tors and have analy­zed the ef­fects of mis­spe­ci­fi­ed dis­t­ri­bu­tions.

    [1] Ze­len, M., & Fe­in­le­ib, M. (1969). On the The­ory of Scre­e­ning for Ch­ro­nic Di­se­as­es. Bio­met­ri­ka, 56(3), 601-614. doi: 10.2307/​2334668
    [2] Wu, D., Ros­ner, G. L. and Bro­e­me­ling, L. (2005), MLE and Ba­ye­si­an In­fe­ren­ce of Age-De­pen­dent Sen­sit­i­vity and Tran­sit­i­on Pro­ba­bi­lity in Pe­ri­o­dic Scre­e­ning. Bio­met­rics, 61: 1056–1063. doi: 10.1111/​j.1541-0420.2005.00361.x

  • 2018. május 4., péntek, 10 óra
    Sam EfromovichUTDallas, Fellow of IMS and ASA
    Missing and Modified Data in Nonparametric Statistics

    Af­ter a short int­ro­duc­ti­on to to­pics in non­pa­ra­met­ric cur­ve est­ima­ti­on, co­ve­red in my new 2018 Chap­man & Hall book with the same tit­le as the talk, th­ree spe­ci­fic prob­lems will be cons­idered. The first one is non­pa­ra­met­ric reg­r­es­si­on with mis­sing at ran­dom (MAR) res­pon­ses. It will be expla­ined that a comp­le­te case app­ro­ach is op­ti­mal in this case. The se­cond prob­lem is a non­pa­ra­met­ric reg­r­es­si­on with mis­sing at ran­dom (MAR) pre­dic­tors. It will be expla­ined that in ge­ne­ral a comp­le­te case app­ro­ach is in­con­sis­tent for this type of mis­sing and a spe­ci­al pro­ce­du­re is ne­e­ded for ef­fi­ci­ent est­ima­ti­on. The last exp­lor­ed prob­lem is de­vo­ted to sur­vi­val analy­sis, spe­ci­fi­cally to ef­fi­ci­ent est­ima­ti­on of a ha­zard rate func­ti­on for tr­un­ca­ted and cen­sor­ed data.

  • 2018. április 27., péntek, 10 óra
    Marco S. ReisCIEPQPF, University of Coimbra, Portugália
    Trends in industrial process monitoring

    Sin­ce the pi­o­ne­e­ring work of Wal­ter A. Shew­hart in the 1920s, pro­cess mo­ni­tor­ing has been gro­wing in im­por­tance and is cur­rently ack­now­led­ged as a key ac­ti­vity in pro­cess ope­ra­tions. As pro­cess mo­ni­tor­ing app­ro­a­ches its 100 ye­ars of exis­ten­ce, it is pos­sib­le to re­cog­ni­ze the exis­ten­ce of se­ve­ral evo­lu­ti­on­ary trends du­ring this ex­ten­sive pe­ri­od of time that sha­ped the na­tu­re of many so­lu­tions and met­hods pro­po­s­ed. Some of the­se trends are well-known, whi­le the exis­ten­ce of ot­hers is not so well-per­ce­i­ved and app­re­cia­ted. In this talk, an over­view will be pro­vi­ded for se­ve­ral of this old and new trends, as well as examp­les il­lustrating the­ir cur­rent prog­ress. Among the trends add­res­sed, are: (i) From un­iva­ria­te, to mult­iva­ria­te, to high-di­men­si­o­nal (“mega-va­ria­te”) sys­tems; (ii) From sta­ti­on­ary, to dy­na­mic, to non-sta­ti­on­ary pro­ces­ses; (iii) From de­tec­ti­on, to di­ag­no­sis, to prog­no­sis; (iv) From mo­ni­tor­ing the mean, to dis­pers­ion, to cor­re­la­ti­on.

  • 2018. április 6., péntek, 10 óra 30 perc
    Bősze ZsuzsannaSzegedi Tudományegyetem Bolyai Intézet
    On tail behavior of first- and second-order Galton--Watson processes with immigration

    Bran­ch­ing pro­ces­ses have been fre­qu­ently used in bio­logy, e.g., for mo­deling the spre­ad of an in­fec­ti­o­us di­se­a­se, for gene amp­li­fi­ca­ti­on and deamp­li­fi­ca­ti­on or for mo­deling te­lo­me­re shor­te­ning, so the­ir in­vestiga­ti­on is an es­sen­ti­al to­pic. In this talk we will fo­cus on descri­bing the tail be­ha­vi­or of first- and se­cond-or­der Gal­ton–Wat­son pro­ces­ses with im­mig­ra­ti­on in the pre­sen­ce of re­gu­larly varying dis­t­ri­bu­tions. Na­mely, we give suf­fi­ci­ent con­di­tions on the in­ital, offsp­ring and im­mig­ra­ti­on dis­t­ri­bu­tions un­der which a first- or se­cond or­der Gal­ton–Wat­son pro­cess with im­mig­ra­ti­on is re­gu­larly varying.

    Mo­re­o­ver, in the se­cond-or­der case we also give con­di­tions un­der which the cor­res­pond­ing two-type Gal­ton–Wat­son pro­cess with im­mig­ra­ti­on has a uni­que sta­ti­on­ary dis­t­ri­bu­ti­on such that its com­mon mar­gi­nals are re­gu­larly varying as well.

    Jo­int work with Má­tyás Bar­czy and Gyu­la Pap.

  • 2018. február 16., péntek, 10 óra
    Rozner BenceELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Aszimptotikus fokszámeloszlás többtípusú véletlen gráfokban

    Az utób­bi idő­ben szá­mos olyan vé­let­len grá­fot vizs­gál­tak meg, amely­nek a fej­lő­dé­se ún. pref­er­en­tial at­tach­ment di­na­mi­kát kö­vet. A vé­let­len grá­fok­kal kap­cso­la­tos ku­ta­tá­so­kat a gya­kor­la­ti al­kal­ma­zá­sok­ban meg­je­le­nő nagy­mé­re­tű há­ló­za­tok mo­ti­vál­ják, mint pél­dá­ul az in­ter­net, il­let­ve kü­lön­fé­le bio­ló­gi­ai és szo­ci­á­lis há­ló­za­tok. Az al­kal­ma­zá­sok egy ré­szé­ben a gráf csú­csai és élei vé­ges sok tí­pus­ba so­rol­ha­tók. Pél­dá­ul egy szo­ci­á­lis há­ló­zat­ban a csú­csok je­löl­het­nek fér­fi­a­kat, il­let­ve nő­ket, és az élek­kel több­fé­le kap­cso­la­tot mo­del­lez­he­tünk.

    Az elő­adás té­má­ja egy olyan diszk­rét lé­pé­sek­ben fej­lő­dő pref­er­en­tial at­tach­ment di­na­mi­kát kö­ve­tő gráf­mo­dell, amely­ben az élek tí­pu­sa­it vé­let­len­sze­rű­en sor­sol­juk ki. Fel­té­te­lez­zük, hogy a gráf struk­tú­rá­já­nak fej­lő­dé­se és az élek tí­pu­sá­nak ki­vá­lasz­tá­sa köl­csö­nö­sen hat egy­más­ra. Az egy­sze­rű­ség ked­vé­ért egye­dül a \(2\)-féle tí­pus­sal ren­del­ke­ző mo­del­le­ket te­kint­jük át, de az ered­mé­nyek és a bi­zo­nyí­tá­sok könnye­dén ál­ta­lá­no­sít­ha­tók tet­sző­le­ge­sen sok tí­pus­ra. Az egyes tí­pu­so­kat szí­nek­kel is rep­re­zen­tál­hat­juk, így gon­dol­ha­tunk egy olyan gráf­ra, amely­ben az élek kék, il­let­ve pi­ros szí­nű­ek. Az elő­adás so­rán az egy va­ló­szí­nű­sé­gű aszimp­to­ti­kus fok­szám­el­osz­lás lé­te­zé­sét iga­zol­juk kü­lön­fé­le vé­let­len gráf­mo­del­lek­ben, te­hát be­bi­zo­nyít­juk, hogy rög­zí­tett \(k\) és \(l\) ese­tén a \(k\) kék, il­let­ve \(l\) pi­ros szí­nű él­lel ren­del­ke­ző csú­csok ará­nya egy va­ló­szí­nű­ség­gel kon­ver­gál egy va­ló­szí­nű­sé­gi vál­to­zó­hoz, amint a lé­pé­sek szá­ma tart a vég­te­len­hez. Ez­után meg­mu­tat­juk, hogy az aszimp­to­ti­kus fok­szám­el­osz­lás tag­jai ki­elé­gí­te­nek bi­zo­nyos re­kur­zi­ós egyen­le­te­ket. Vé­gül át­te­kint­jük, hogy mi mond­ha­tó a ská­la­füg­get­len­ség­ről több­tí­pu­sú vé­let­len gráf­mo­del­lek­ben.

    Az ered­mé­nyek Back­ha­usz Ágnes­sel kö­zö­sek.

  • 2017. december 8., péntek
    Bodó ÁgnesELTE TTK Alkalmazott Analízis tanszék
    Control of epidemic spread on networks

    Clas­sic cont­rol the­ory is app­li­ed to net­work-bas­ed epi­de­mic mo­dels in the talk. In par­ti­cu­lar, we apply non­li­near mo­del pre­dic­tive cont­rol (NMPC) to a pair­wi­se ODE mo­del which we use to descri­be a sus­cep­tib­le-in­fec­ti­o­us-sus­cep­tib­le (SIS) epi­de­mic on a net­work. The goal of cont­rol is to era­di­ca­te the di­se­a­se whi­le kee­ping the net­work well con­nec­ted. Mo­re­o­ver we use the cont­rol of the pair­wi­se ODE mo­del to cont­rol the sto­chas­tic si­mu­la­ti­on. The talk gi­ves a tho­ro­ugh and de­tai­led nu­me­ri­cal in­vestiga­ti­on of the im­pact and in­ter­ac­ti­on of sys­tem and cont­rol pa­ra­me­ters on the cont­rol­la­bi­lity of the sys­tem.

  • 2017. december 1., péntek, 11 óra
    Kevei PéterSzegedi Tudományegyetem
    Intermittency and almost sure properties of the solution of the stochastic heat equation with Lévy noise

    We in­vestiga­te the mo­ment asymp­to­tics of the so­lu­ti­on to the sto­chas­tic heat equa­ti­on dri­ven by a \((d+1)\)-di­men­si­o­nal Lévy space–time white no­i­se. Un­li­ke the case of Gaus­si­an no­i­se, the so­lu­ti­on ty­pi­cally has no fi­ni­te mo­ments of or­der \(1+2/d\) or hig­her. In­ter­mit­tency of or­der \(p\), that is, the ex­po­nen­ti­al growth of the \(p\)th mo­ment as time tends to in­fi­nity, is est­ab­lis­hed in di­men­si­on \(d=1\) for all va­lues \(p\in(1,3)\), and in hig­her di­men­sions for some \(p\in(1,1+2/d)\). In some spe­ci­al cas­es we also in­vestiga­te the al­most sure proper­ti­es of the so­lu­ti­on.

    The talk is bas­ed on on­go­ing jo­int work with Cars­ten Chong.

  • 2017. november 17., péntek, 10 óra
    Liptay ZoltánOrszágos Vízjelző Szolgálat
    Az Országos Vízjelző Szolgálat előrejelzési módszertana

    Az OVSZ rö­vid tör­té­ne­te meg­ala­ku­lá­sá­tól nap­ja­in­kig. Az adat­gyűj­tés, adat­ke­ze­lés és az elő­re­jel­zés inf­ra­struk­tú­rá­já­nak és mód­szer­ta­ná­nak fej­lő­dé­se. A je­len­leg hasz­nált ope­ra­tív le­fo­lyás elő­re­jel­ző rend­szer rész­le­tes is­mer­te­té­se, a be­jö­vő ada­tok­tól az elő­re­jel­zé­si pro­duk­tu­mok elő­ál­lí­tá­sá­ig. A hid­ro­ló­gi­ai elő­re­jel­zés, va­la­mint a víz­hő­mér­sék­let és a jég­vi­szo­nyok elő­re­jel­zé­sé­nek je­len­leg al­kal­ma­zott mód­szer­ta­ná­nak be­mu­ta­tá­sa.

  • 2017. november 10., péntek, 11 óra
    Ashish KumarELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Modelling joint behaviour of asset prices using stochastic correlation

    It is a well-known fact that the cor­re­la­ti­on bet­ween pri­ces of fi­nan­cial pro­ducts, fi­nan­cial inst­ru­ments plays an im­por­tant role in the­ir eva­lu­a­ti­on and pri­cing de­ri­va­ti­ves writ­ten on them. Us­ing simply a cons­tant or de­ter­mi­nis­tic cor­re­la­ti­on may lead to ex­cess risk, sin­ce mar­ket ob­ser­va­tions give evi­den­ce that the cor­re­la­ti­on is not a cons­tant qu­an­tity. To mo­del the jo­int be­ha­vi­o­ur of as­set pri­ces cor­rectly is par­ti­cu­larly es­sen­ti­al when pri­cing de­ri­va­ti­ves de­pen­dent on tho­se as­sets. Ty­pi­cal examp­les are va­ri­o­us spre­ad or exc­han­ge opt­ions, Qu­an­to opt­ions or so-called ra­in­bow opt­ions. The cons­tant cor­re­la­ti­on is not suf­fi­ci­ent to rep­re­sent the in­ter­de­pen­den­ce of the un­derly­ing be­ca­u­se from mar­ket data we have evi­den­ce that in­ter­de­pen­den­ce is not li­near. In this work, we sup­po­se that the in­di­vi­du­al as­set pri­ces fol­low one of the usu­al mo­dels of fi­nan­cial ma­the­ma­tics e.g., Geo­met­ric Brow­ni­an mo­ti­on or a sto­chas­tic vo­la­ti­lity mo­del like the Hull-White or Hest­on mo­dels. Even­tu­ally, Va­ri­ance Gam­ma or ot­her su­bor­di­na­ted Brow­ni­an mo­ti­on mo­dels may also be cons­idered wit­hin our fra­me­work. Ins­tead of us­ing a cons­tant cor­re­la­ti­on we have used so called sto­chas­tic cor­re­la­ti­on i.e. time de­pen­dent and ran­dom cor­re­la­ti­on. We sug­gest creat­ing the sto­chas­tic cor­re­la­ti­on pro­cess by us­ing a Ja­co­bi pro­cess or a tan­gent hy­per­bo­lic trans­for­ma­ti­on of a dif­fu­si­on pro­cess. Our ge­ne­ral app­ro­ach pro­vi­des a sto­chas­tic cor­re­la­ti­on which is more re­a­lis­tic to mo­del real world phe­no­me­na and could be used in many fi­nan­cial app­li­ca­ti­on fields. We il­lustra­te it on an examp­le of two stock pri­ce data. Furt­her­mo­re, us­ing our nu­me­ri­cal and si­mu­la­ti­on met­hods, we com­pa­re our app­ro­ach of mo­dell­ing sto­chas­tic cor­re­la­ti­on eit­her by Ja­co­bi or tan­gent hy­per­bo­lic trans­for­ma­ti­on of a dif­fu­si­on pro­cess with the gaus­si­an case and conc­lu­de that us­ing cons­tant cor­re­la­ti­on can lead to un­der­est­ima­ted cor­re­la­ti­on risk, and hen­ce fi­nan­cial loss. The rea­son is that the Gaus­si­an co­pu­la mo­del in­du­ced by cons­tant cor­re­la­ti­on does not al­low for mar­ket-con­sis­tent va­ri­a­bi­lity and thus fail to cap­tu­re the risk. The cons­idered case of stock pri­ces fully jus­ti­fy this sta­te­ment. In our study we have fo­cu­s­ed on high fre­qu­ency stock pri­ce data (mi­nute-wise tra­ded) rat­her than di­ur­nal pri­ces, be­ca­u­se of the well known fact that with inc­re­a­sing time-sca­les pri­ces get clos­er to the Gaus­si­an mo­del.

  • 2017. november 10., péntek, 10 óra
    Sebastian FerrandoRyerson University, Toronto, Kanada
    Trajectorial Models based on Operational Assumptions

    We il­lustra­te by examp­le the con­struc­ti­on of one-di­men­si­o­nal mo­dels for opt­ion pri­cing bas­ed on ope­ra­ti­o­nal and ob­serv­ab­le fea­tu­res of a sing­le class of in­ves­tors and a ris­ky as­set. Mar­ket mo­dels are de­fi­ned bas­ed on a class of in­ves­tors cha­rac­te­ri­zed by how they ope­ra­te on fi­nan­cial data lead­ing to po­ten­ti­al port­fo­lio re-ba­lan­ces. Once ob­serv­ab­le va­ri­a­b­les are se­lec­ted for mo­deling, ne­ces­sary con­di­tions const­rain­ing the­se va­ri­a­b­les and re­sult­ing from the ope­ra­ti­o­nal se­tup are de­ri­ved. Fu­tu­re un­certainty is then ref­lec­ted in the con­struc­ti­on of com­bi­na­to­ri­al traj­ec­to­ry spa­ces sa­tis­fying such const­ra­ints. In the ab­sen­ce of pro­ba­bi­lity as­sumpt­ions, a min­max met­ho­do­logy is ava­i­lab­le to pri­ce opt­ion cont­racts; nu­me­ri­cal re­sults are pre­sen­ted bas­ed on worst case est­ima­ti­on of pa­ra­me­ters.

  • 2017. október 27., péntek, 10 óra
    Németh LászlóELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Regressziós módszer a farokparaméter becslésére

    Az ext­rém­ér­ték-el­mé­let fon­tos té­ma­kö­rei közé tar­to­zik az ext­rém ér­té­ke­ket jól jel­lem­ző fa­rok­pa­ra­mé­ter meg­ha­tá­ro­zá­sa. Több becs­lés is is­mert, me­lyik kö­zül az egyik leg­gyak­rab­ban hasz­nált a Hill-becs­lés, amely a \(k\) leg­na­gyobb min­ta­ele­men ala­pul. A \(k\) ér­té­ké­nek meg­ha­tá­ro­zá­sa azon­ban nem egy­ér­tel­mű fel­adat, és na­gyon sok mód­szer lé­te­zik va­la­mi­lyen szem­pont­ból op­ti­má­lis \(k\) vá­lasz­tá­sá­ra.

    Ha a fa­rok­pa­ra­mé­ter ki­sebb, mint \(0,5\), ak­kor a leg­jobb becs­lést egy Kol­mo­go­rov–Szmir­nov-tá­vol­sá­gon ala­pu­ló mód­szer adja. Ma­ga­sabb ér­té­kek ese­tén azon­ban ész­re­vet­tük, hogy a becs­lés egy ál­ta­lá­no­sí­tott ext­rém­ér­ték-el­osz­lás­hoz ha­son­ló el­osz­lást kö­vet, il­let­ve egy li­ne­á­ris mér­té­kű tor­zí­tást tar­tal­maz. Ezen ész­re­vé­te­lek alap­ján ki­dol­goz­tuk a reg­resszi­ós mód­szert, amely \(0,5<\xi<4\) kö­zött jól be­csü­li a fa­rok­pa­ra­mé­tert. A mód­szer ered­mé­nye­it több ki­in­du­lá­si el­osz­lás alap­ján össze­ha­son­lít­va más al­go­rit­mu­sok­kal azt ál­lít­hat­juk, hogy a \(0,5<\xi<4\) tar­to­má­nyon a leg­több ko­ráb­bi mód­szer­nél jobb ered­ményt ad.

  • 2017. június 9., péntek
    Kornyik MiklósELTE TTK és MTA Wigner Fizikai Kutatóközpont
    Random matrices and orthogonal polynomials: connection of eigenvalues and zeros

    The his­to­ry of ran­dom mat­ri­ces goes back to 1920s, when John Wis­hart com­pu­ted the den­sity func­ti­on of Gaus­si­an samp­le co­va­ri­ance mat­ri­ces. Then, in the 50s, Eu­ge­ne Wig­ner used ran­dom her­mi­ti­an mat­ri­ces to app­ro­xi­ma­te the spectra of ato­mic nuc­lei. It is known that un­der some ge­ne­ral con­di­tions the asymp­to­tic be­ha­vi­o­ur of her­mi­ti­an ran­dom mat­ri­ces fol­low Wig­ner’s se­mi­circ­le law, whi­le ran­dom samp­le co­va­ri­ance mat­ri­ces fol­low the so called “qu­ar­ter circ­le law”, also known as Marchen­ko-Pas­tur law. The same asymp­to­tic re­sults hold for the ze­ros of Her­mi­te poly­no­mi­als and La­guerre poly­no­mi­als. Sin­ce For­res­ter and Gam­burd showed that the ex­pec­ta­ti­on of the cha­rac­te­r­is­tic poly­no­mi­al of a ran­dom her­mi­ti­an mat­rix co­in­ci­des with the Her­mi­te poly­no­mi­al of the same deg­ree as the di­men­si­on of the mat­rix, whi­le the same for samp­le co­va­ri­ance mat­ri­ces is gi­ven by the La­guerre poly­no­mi­al of same deg­ree as the di­men­si­on and some spe­ci­fic pa­ra­me­ter, it is rea­son­ab­le to ask if the­re was a deeper con­nec­ti­on bet­ween the ei­gen­va­lues of ran­dom mat­ri­ces and the ze­ros of ort­ho­go­nal poly­no­mi­als. Du­ring the talk I will ment­ion some re­cent re­sults co-aut­hor­ed by my ad­vi­sor, György Mi­cha­letz­ky abo­ut the mo­ments of the ro­ots of the­se ort­ho­go­nal poly­no­mi­als and by furt­her in­vestiga­ti­on of the cha­rac­te­r­is­tic poly­no­mi­al and the em­pi­ri­cal ex­pec­ta­ti­on of the ei­gen­va­lues, I will try to find the ans­wer to the pre­vi­o­us quest­ion.

  • 2017. június 2., péntek
    Barczy MátyásDebreceni Egyetem
    Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process

    We cons­ider a jump-type Cox–In­gers­oll–Ross (CIR) pro­cess \[ \mathrm{d}Y_t=(a-bY_t)\mathrm{d}t+\sigma\sqrt{Y_t}\mathrm{d}W_t +\mathrm{d}J_t, \qquad t \in [0, \infty) , \]
    with a de­ter­mi­nis­tic ini­ti­al va­lue \(y_0\in [0, \infty)\), whe­re \(a\in[0,\infty)\), \(b\in(-\infty,\infty)\), \(\sigma\in(0,\infty)\), \((W_t)_{t\in[0, \infty)}\) is a 1-di­men­si­o­nal stan­dard Wi­e­ner pro­cess, and \((J_t)_{t\in[0,\infty)}\) is an in­de­pen­dent su­bor­di­na­tor (an inc­re­a­sing Lévy pro­cess) with zero drift and with Lévy me­a­sure \(m\) con­centrating on \((0, \infty)\) such that \(\int_0^\infty z m(\mathrm{d} z) \in [0, \infty)\), that is, \[ \mathrm{E}(\mathrm{e}^{u J_t})= \exp\left\{t\int_0^\infty(\mathrm{e}^{uz} - 1)m(\mathrm{d}z)\right\}, \qquad t \in [0, \infty), \qquad u \in (-\infty, 0]. \] We study asymp­to­tic proper­ti­es of the ma­xi­mum li­ke­li­ho­od est­ima­tor (MLE) for the growth rate \(b\) of the mo­del bas­ed on con­ti­nu­o­us time ob­ser­va­tions \((Y_t)_{t\in[0,T]}\) as \(T \to \infty\). We dist­in­gu­ish th­ree cas­es: subc­ri­ti­cal, cri­ti­cal and su­perc­ri­ti­cal cas­es ac­cord­ing to \(b>0\), \(b=0\) and \(b<0\). In the subc­ri­ti­cal case we pro­ve weak con­sis­tency and asymp­to­tic nor­ma­lity, and, un­der the ad­di­ti­o­nal mo­ment as­sumpt­ion \(\int_0^1 z \log(1/z) m(\mathrm{d}z) < \infty\), strong con­sis­tency as well. In the su­perc­ri­ti­cal case, we pro­ve strong con­sis­tency and mi­xed nor­mal (but non-nor­mal) asymp­to­tic be­ha­vi­or, whi­le in the cri­ti­cal case, weak con­sis­tency and non-stan­dard asymp­to­tic be­ha­vi­or are descri­bed. Con­cer­ning the asymp­to­tic be­ha­vi­or of the MLE in the su­perc­ri­ti­cal case, we de­rive a sto­chas­tic rep­re­s­en­ta­ti­on of the li­mit­ing mi­xed nor­mal dis­t­ri­bu­ti­on, whe­re the al­most sure li­mit of an app­rop­ria­tely sca­led jump-type su­perc­ri­ti­cal CIR pro­cess co­mes into play. This is a new phe­no­me­na, com­pa­red to the cri­ti­cal case, whe­re a dif­fu­si­on-type cri­ti­cal CIR pro­cess plays a role.

    M. Bar­czy, M. Ben Alaya, A. Ke­ba­i­er, G. Pap (2016). Asymp­to­tic proper­ti­es of ma­xi­mum li­ke­li­ho­od est­ima­tor for the growth rate for a jump-type CIR pro­cess bas­ed on con­ti­nu­o­us time ob­ser­va­tions. Ar­Xiv: 1609.05865

  • 2017. május 5., péntek
    Gáll JózsefDebreceni Egyetem

  • 2017. április 28., péntek, 10 óra
    Ian DrydenUniversity of Nottingham, Egyesült Királyság
    Penalized Euclidean Distance Regression

    We cons­ider a met­hod for va­ri­a­b­le se­lec­ti­on and pre­dic­ti­on in li­near reg­r­es­si­on prob­lems whe­re the num­ber of pre­dic­tors can be much lar­ger than the num­ber of ob­ser­va­tions. The met­hod in­vol­ves mi­n­imi­zing a pe­na­li­zed Euc­li­de­an dis­tance, whe­re the pe­nal­ty is the geo­met­ric mean of the \(l_1\) and \(l_2\) nor­ms of the reg­r­es­si­on co­ef­fi­ci­ents. This par­ti­cu­lar for­mu­la­ti­on ex­hi­bits a gro­u­ping ef­fect, which is us­e­ful for scre­e­ning out pre­dic­tors in hig­her or ult­ra-high di­men­si­o­nal prob­lems. Also, an im­por­tant re­sult is a sig­nal re­co­very the­or­em, which does not re­qu­i­re an est­ima­te of the no­i­se stan­dard de­vi­a­ti­on. Prac­ti­cal per­for­man­ces of va­ri­a­b­le se­lec­ti­on and pre­dic­ti­on are eva­lu­a­ted th­ro­ugh si­mu­la­ti­on stu­di­es and the analy­sis of a da­ta­set of mass spectro­metry scans from me­la­no­ma pa­ti­ents, whe­re ex­cel­lent pre­dic­tive per­for­mance is ob­ta­ined.

    This is jo­int work with Da­ni­el Va­si­liu (Col­l­e­ge of Wil­li­am and Mary) and Tan­u­jit Dey (Cleve­land Cli­nic).

  • 2017. április 21., péntek, 10 óra 30 perc
    Baran SándorDebreceni Egyetem
    Parameter estimation in Pickard models

    We in­vestiga­te ge­ne­ral Pic­kard mo­dels of form \[ X_{k,\ell}= \alpha X_{k-1,\ell}+\beta X_{k,\ell-1} +\gamma X_{k-1,\ell-1} +\varepsilon_{k,\ell}, \] whe­re the in­de­pen­dent in­no­va­tions  \(\varepsilon_{k,\ell}\)  have zero mean and unit va­ri­ance. The­se spa­ti­al au­to­reg­r­es­sive mo­dels play im­por­tant ro­les, e.g., in ag­ri­cul­tu­re, di­g­ital fil­te­ring and image pro­ces­sing as well.

    The Pic­kard mo­del is stab­le ins­ide a tet­ra­hed­ron with ver­ti­ces \((1,1,-1)\), \((1,-1,1)\), \((-1,1,1)\) and \((-1,-1,-1)\) and un­stab­le on the bo­un­dary of this do­ma­in. We are in­ter­es­ted in the asymp­to­tic proper­ti­es of the lea­st squ­a­res est­ima­tor (LSE) of the pa­ra­me­ters in the un­stab­le case.

    In the spe­ci­al case \(\gamma=0\) Pa­u­laus­kas, 2007 de­ter­mi­ned the asymp­to­tic be­ha­vi­o­ur of the va­ri­an­ces of the pro­cess and Ba­ran et al., 2007 showed that in the un­stab­le case the LSE of \((\alpha,\beta)\) is asymp­to­ti­cally nor­mal and the rate of con­ver­gen­ce is \(n^{-3/2}\) if one of the pa­ra­me­ters equ­als zero and \(n\), ot­her­wi­se. In this spe­ci­al mo­del \(\varrho :=|\alpha|+|\beta |\) plays the role of a sta­bi­lity pa­ra­me­ter and Ba­ran et al., 2016 ve­ri­fi­ed that the LSE of \(\varrho\) is asymp­to­ti­cally nor­mal with a sca­ling fac­tor \(n^{5/4}\), which is in cont­rast to the case of the clas­si­cal AR(p) mo­del.

    In the ge­ne­ral mo­del the asymp­to­tic be­ha­vi­o­ur of the va­ri­an­ces of the pro­cess and the proper­ti­es of the LSE of the pa­ra­me­ters \((\alpha,\beta,\gamma)\) de­pend on the lo­ca­ti­on of the pa­ra­me­ters (Ba­ran, 2011). It turns out that the li­mit­ing dis­t­ri­bu­ti­on of the LSE is nor­mal and the rate of con­ver­gen­ce is \(n\)
    when the pa­ra­me­ters are in the fa­ces or on the ed­ges of the bo­un­dary of the do­ma­in of sta­bi­lity, whe­re­as on the ver­ti­ces the rate is \(n^{3/2}\) (Ba­ran and Pap, 2012). Un­stab­le ge­ne­ral Pic­kard mo­dels have app­li­ca­tions in image pro­ces­sing as they are di­rectly re­la­ted to loss­less JPEG comp­r­es­si­on.

    [Ba­ran, 2011] Ba­ran, S. (2011) On the va­ri­an­ces of a spa­ti­al unit root mo­del. Lith. Math. J. 51, 122–140.

    [Ba­ran and Pap, 2012] Ba­ran, S., Pap, G. (2012) Pa­ra­me­ter est­ima­ti­on in a spa­ti­al unit root au­to­reg­r­es­sive mo­del. J. Mult­iva­ria­te Anal. 107, 282–305.

    [Ba­ran et al., 2016] Ba­ran, S., Pap, G., Si­ko­lya, K. (2016) Test­ing sta­bi­lity in a spa­ti­al un­i­la­te­ral au­to­reg­r­es­sive mo­del. Comm. Sta­tist. The­ory Met­hods 45, 933–949.

    [Ba­ran et al., 2007] Ba­ran, S., Pap, G., Zu­ij­len, M. v. (2007) Asymp­to­tic in­fe­ren­ce for unit ro­ots in spa­ti­al tri­an­gu­lar au­to­reg­r­es­si­on. Acta Appl. Math. 96, 17–42.

    [Pa­u­laus­kas, 2007] Pa­u­laus­kas, V. (2007) On unit ro­ots for spa­ti­al au­to­reg­r­es­sive mo­dels. J. Mult­iva­ria­te Anal. 98, 209–226.

  • 2017. április 7., péntek, 10 óra
    Véber MiklósMorgan Stanley
    Vasicek-modell használata hitelkockázat mérésére

    Az elő­adás fő té­má­ja a Ba­sel II sza­bá­lyo­zás ál­tal elő­írt, hi­tel­koc­ká­zat mé­ré­sé­re hasz­nált IRB for­mu­la le­ve­ze­té­se lesz. Ki­in­du­lá­si alap­ként Va­si­cek port­fo­lió mo­dell­je ke­rül be­mu­ta­tás­ra, mely­nek so­rán a port­fo­lió gra­nu­la­ri­tá­sá­nak nö­ve­lé­sé­vel zárt for­mu­la ad­ha­tó a vesz­te­ség ha­tár­el­osz­lá­sá­ra. Amennyi­ben ma­rad idő, szó esik a mo­del fel­té­te­le­i­nek eny­hí­té­sé­ről, il­let­ve a mo­dell al­kal­maz­ha­tó­sá­gá­ról struk­tu­rált hi­tel­koc­ká­za­ti ter­mé­kek (CDO-k) ára­zá­sá­nál.

  • 2017. március 31., péntek, 10 óra
    Horváth BlankaImperial College London
    Short dated option pricing under rough volatility

    Jo­int work with Phi­lipp Harms, An­toine Jac­qui­er and also with Ch­ris­ti­an Bayer, Pe­ter Friz, Ar­chil Gu­lis­hash­vi­li and Ben­ja­min Stem­per.

    Imp­li­ed vo­la­ti­lity, as a unit-less in­di­ca­tor of opt­ion pri­ces, is at the very cent­re of qu­an­ti­ta­tive fi­nance, and un­der­stand­ing its pre­ci­se be­ha­vi­o­ur has been the fo­cus of pra­tic­ti­o­n­er­s’ and aca­de­mics’ for se­ve­ral de­ca­des. Re­cently Gat­he­ral, Ja­is­son and Ro­s­en­ba­um [11] pro­po­s­ed a new class of mo­dels able to re­mar­ka­bly acc­ura­tely fit and fo­re­cast vo­la­ti­lity time se­ri­es. Fol­lo­wing this se­mi­nal paper, Bayer, Friz and Gat­he­ral [3] stu­di­ed the pri­cing prob­lem in this class of mo­dels. Spe­ci­fi­cally, Bayer, Friz and Gat­he­ral [3] re­port on stri­king ap­ti­tu­des of a na­tu­ral mo­del in this class in re­pro­du­cing some dis­tinc­tive fea­tu­res of the imp­li­ed vo­la­ti­lity which tra­di­ti­o­nal vo­la­ti­lity mo­dels so far were no­to­ri­o­usly una­b­le to cap­tu­re. Asymp­to­tic re­sults in this di­rec­ti­on [1, 8, 9, 10] ar­rive at si­mil­ar conc­lu­sions, re­in­for­cing the po­ten­ti­al pro­wess of this class of mo­dels. In this mo­del class, the ins­tan­ta­ne­o­us vo­la­ti­lity of the pri­ce pro­cess is sto­chas­tic, but dri­ven not by a stan­dard Brow­ni­an mo­ti­on, but by a frac­ti­o­nal Brow­ni­an mo­ti­on, hen­ce al­lo­wing for me­mory (aka non Mark­o­vi­a­nity) of the vo­la­ti­lity pro­cess. Ge­ne­ral­ising the­ir mo­del slightly, the stock pri­ce pro­cess sa­tis­fi­es the fol­lo­wing sys­tem of sto­chas­tic dif­fe­ren­ti­al equa­tions: \[ \begin{aligned} dS_t&=\sigma_t S_t dB_t,&S_0&>0,&&\\ d\sigma_t&= b(\sigma_t)dt + a(\sigma_t )dW^H_t,&\sigma_0&>0,&& \end{aligned} (1) \] whe­re the Hurst co­ef­fi­ci­ent \(H\in(0, 1)\) de­ter­mi­nes the deg­ree of smo­oth­ness (or ro­ugh­ness) of the con­ti­nu­o­us frac­ti­o­nal Brow­ni­an mo­ti­on W H and whe­re the co­ef­fi­ci­ents \(b(\cdot)\) and \(a(\cdot)\) are as­sum­ed to be re­gu­lar eno­ugh. The two Gaus­si­an dri­vers \(B\) and \(W^H\) are cor­re­la­ted via the Vol­ter­ra rep­re­s­en­ta­ti­on of the lat­ter. In this talk I re­port on two li­nes of re­se­arch of this class of mo­dels from an asymp­to­tic point of view: One line of re­sults (ob­ta­ined jo­intly with Phi­lipp Harms and An­toine Jac­qui­er) fo­cus­ses on den­sity asymp­to­tics for this class of mo­dels, the ot­her line of re­sults (ob­ta­ined jo­intly with Ch­ris­ti­an Bayer, Pe­ter Friz, Ar­chil Gu­li­sash­vi­li and Ben­ja­min Stem­per) stu­di­es the asymp­to­tics of call pri­ces near the mo­ney di­rectly, when the time to ma­tu­rity be­co­mes small.

    • Den­sity asymp­to­tics for ro­ugh sto­chas­tic vo­la­ti­lity mo­dels: For mo­dels in the frac­ti­o­nal vo­la­ti­lity fa­mily, whe­re the exis­ten­ce and smo­oth­ness of the den­sity is gi­ven, we re­vi­sit small-no­i­se ex­pan­sions in the spi­rit of Be­na­rous, Bau­do­in-Ouy­ang, De­us­chel-Friz-Jac­qui­er-Vi­o­lan­te for biva­ria­te dif­fu­sions dri­ven by frac­ti­o­nal Brow­ni­an mo­tions with dif­fe­rent Hurst ex­po­nents. We de­rive su­i­tab­le ex­pan­sions in the­se frac­ti­o­nal sto­chas­tic vo­la­ti­lity mo­dels and in­fer cor­res­pond­ing ex­pan­sions for imp­li­ed vo­la­ti­lity. This sheds light (i) on the inf­lu­en­ce of the Hurst pa­ra­me­ter in the time-de­cay of the smi­le and (ii) on the asymp­to­tic be­ha­vi­o­ur of the tail of the smi­le, inc­lu­ding hig­her or­ders.
    • Ex­tend­ing den­sity re­sults wit­hin the frac­ti­o­nal vo­la­ti­lity fa­mily: for a fi­xed time \(t \geq 0\), exis­ten­ce and smo­oth­ness of the den­sity of \(S_t\) or of the co­up­le \((S_t , \sigma_t )\) is by now clas­si­cal when \(H = 1/2\) (stan­dard Brow­ni­an mo­ti­on), or when the ot­her dri­ver \(B\) is also frac­ti­o­nal with the same Hurst ex­po­nent. The­se re­sults go back to Mal­lia­vin [14] and have been ex­ten­ded by many aut­hors, inc­lu­ding Bau­do­in-Ha­i­rer [2], Cass-Friz [5]. Howe­ver, in this mi­xed class of mo­dels, no pre­ci­se re­sults exist, and we aim at ex­tend­ing this li­te­ra­tu­re in this di­rec­ti­on. We in­tend to fol­low two app­ro­a­ches: first fol­lo­wing the clas­si­cal steps of Mal­lia­vin’s pro­of, via Hör­man­der’s the­or­em (com­bi­ning re­sults by Nu­alart [16] and Bau­do­in-Ha­i­rer [2]), se­cond via the the­ory of ro­ugh paths–al­be­it with pos­sibly stron­ger con­di­tions on the co­ef­fi­ci­ents of the pro­cess \((\sigma_t)_{t\geq0}\). Re­gard­ing the lat­ter, in the un­cor­re­la­ted case, it is pos­sib­le to build upon re­sults Cass-Friz’s re­sults [5]. The cor­re­la­ted hy­po­el­lip­tic case is less ‘ob­vi­o­us’ and re­qu­i­res some more work, cur­rently in prog­ress.
    • Call pri­ce asymp­to­tics near the mo­ney: With Ch­ris­ti­an Bayer, Pe­ter Friz, Ar­chil Gu­lis­hash­vi­li, and Ben­ja­min Stem­per, we exp­lo­re an int­ri­guingly di­rect no­vel way of add­r­es­sing (uni­formly with respect to the stri­ke) the asymp­to­tic be­ha­vi­o­ur of va­nil­la opt­ions as time to ma­tu­rity be­co­mes small. This ge­ne­ral app­ro­ach app­li­es to a lar­ge class of ‘clas­si­cal’ (rang­ing from the Black Schol­es to sto­chas­tic vo­la­ti­lity) mo­dels, and car­ri­es over to the sett­ing of ro­ugh mo­dels (as in (1). Both in the stan­dard and in the frac­ti­o­nal sett­ing, this app­ro­ach som­ehow ex­tends the re­sults by De­us­chel-Friz-Jac­qui­er-Vi­o­lan­te [6, 7] in the sen­se that it by­pas­ses the need for the (so far ubi­qu­i­to­usly pre­va­lent) de­ri­va­ti­on of asymp­to­tic ex­pan­sions of the den­sity of the pro­cess. That said, our app­ro­ach app­li­es in a re­gime whe­re opt­ions are ‘mo­de­ra­tely out of the mo­ney’ (with ma­tu­rity-de­pen­dent stri­ke), which in­ter­po­la­tes bet­ween the ‘at-the-mo­ney’ and the ‘out-of-the-mo­ney’ re­gi­mes of opt­ion pri­ces.

    [1] El­isa Alòs, Jor­ge A Le on, and Jo­sep Vi­ves. On the short-time be­ha­vi­or of the imp­li­ed vo­la­ti­lity for jump-dif­fu­si­on mo­dels with sto­chas­tic vo­la­ti­lity. Fi­nance and Sto­chas­tics, 11(4):571–589, 2007.
    [2] F. Bau­do­in and M. Ha­i­rer. A vers­ion of Hör­man­der’s the­or­em for the frac­ti­o­nal Brow­ni­an mo­ti­on. Pro­ba­bi­lity The­o­rey and Re­la­ted Fields, 139: 373-395, 2007).
    [3] C. Bayer, P. Friz and J. Gat­he­ral. Pri­cing Un­der Ro­ugh Vo­la­ti­lity. Forth­com­ing in Qu­an­ti­ta­tive Fi­nance, 2016.
    [4] M. Ben­ned­sen, A. Lun­de and M. Pak­ka­nen. Hybrid sche­me for Brow­ni­an se­mis­ta­ti­on­ary pro­ces­ses, ar­Xiv:1507.03004, 2015.
    [5] T. Cass and P. Friz. Den­sit­i­es for ro­ugh dif­fe­ren­ti­al equa­tions un­der Hör­man­der’s con­di­ti­on. An­nals of Ma­the­ma­tics, 171(3): 2115–2141, 2010.
    [6] J-D. De­us­chel, P. Friz, A. Jac­qui­er and S. Vi­o­lan­te. Mar­gi­nal den­sity ex­pan­sions for dif­fu­sions and sto­chas­tic vo­la­ti­lity, Part I. Com­mu­ni­ca­tions on Pure and App­li­ed Ma­the­ma­tics, 67(2): 321–350, 2014.
    [7] J-D. De­us­chel, P. Friz, A. Jac­qui­er and S. Vi­o­lan­te. Mar­gi­nal den­sity ex­pan­sions for dif­fu­sions and sto­chas­tic vo­la­ti­lity, Part II. Com­mu­ni­ca­tions on Pure and App­li­ed Ma­the­ma­tics, 67 (1): 40–82, 2014.
    [8] M. Fu­ka­sa­wa. Ma­sa­a­ki Fu­ka­sa­wa. Short-time at-the-mo­ney skew and ro­ugh frac­ti­o­nal vo­la­ti­lity. Qu­an­ti­ta­tive Fi­nance, 17(2):189–198, 2017.
    [9] M. Fu­ka­sa­wa. Asymp­to­tic analy­sis for sto­chas­tic vo­la­ti­lity: mart­ingale ex­pan­si­on. Fi­nance and Sto­chas­tics, 15(4):635–654, 2011.
    [10] M. For­de and H. Zhang. Asymp­to­tics for ro­ugh sto­chas­tic vo­la­ti­lity mo­dels. SIAM Jour­nal on Fi­nan­cial Ma­the­ma­tics, 8(1):114–145, 2017.
    [11] J. Gat­he­ral, T. Ja­is­son and M. Ro­s­en­ba­um. Vo­la­ti­lity is ro­ugh. SSRN:2509457, 2014.
    [12] P. Ha­gan, D. Ku­mar, A. Les­ni­ews­ki and D. E. Wood­ward. Ma­nag­ing smi­le risk. Wil­mott, 1: 84–108, 2002.
    [13] S. Hest­on. A Clos­ed-Form So­lu­ti­on for Opt­ions with Sto­chas­tic Vo­la­ti­lity with App­li­ca­tions to Bond and Cur­rency Opt­ions. The Re­view of Fi­nan­cial Stu­di­es, 6(2): 327–343, 1993.
    [14] P. Mal­lia­vin. Sto­chas­tic cal­cu­lus of va­ri­a­tions and hy­po­el­lip­tic ope­ra­tors. Proc. Int. Symp. SDE 195–263, 1976.
    [15] A. Ni­e­mi­nen. Frac­ti­o­nal Brow­ni­an mo­ti­on and mart­ingale-dif­fe­ren­ces. Stat. Prob. Let­ters, 70: 1–10, 2004.
    [16] D. Nu­alart. The Mal­lia­vin Cal­cu­lus and Re­la­ted To­pics. Sprin­ger (2nd Edi­ti­on), 2006.

  • 2017. március 24., péntek, 10 óra
    Georgiy ShevchenkoTaras Shevchenko National University of Kyiv (Ukrajna)
    Nonparametric estimation of the kernel function in the moving average representation of a stationary stable process

    The talk is bas­ed on a jo­int re­se­arch with Ev­geny Spo­da­rev and Jur­gen Kampf (Ulm Uni­ver­sity).

    We cons­ider the prob­lem of est­ima­ti­on of a sym­met­ric kern­el \(f: \mathbb R\rightarrow \mathbb R\) from ob­ser­va­tions of a sta­ti­on­ary ran­dom pro­cess \[X(t) = \int_{\mathbb R} f(t-s)\Lambda(ds),\] whe­re \(\Lambda\) is a \(S\alpha S\) ran­dom me­a­sure with in­de­pen­dent inc­re­ments and Le­bes­gue cont­rol me­a­sure. This class of sto­chas­tic pro­ces­ses inc­lu­des, e.g., stab­le CAR­MA pro­ces­ses which are po­pu­lar in eco­no­met­ric and fi­nan­cial app­li­ca­tions. We use the smo­ot­hed vers­ion of an em­pi­ri­cal self-nor­ma­li­zed pe­ri­o­dog­ram \[ I_{n,X}(\lambda) = \frac{\Big\vert\sum_{j=1}^{n} X(t_{j,n})e^{it_{j,n}\lambda}\Big\vert^2}{\sum_{j=1}^{n}X(t_{j,n})^2} \] of \(X\) to con­struct an est­ima­tor for \(f\) from ob­ser­va­tions \(X(t_{j,n})\) on a high-fre­qu­ency ex­panding grid of points \(\big\{t_{j,n}=j\Delta_n, j=1,\dots,n\big\}\). Weak con­sis­tency of the est­ima­tor as \(n\rightarrow\infty\) is shown. We also analy­ze the per­for­mance of the est­ima­tes th­ro­ugh nu­me­ri­cal si­mu­la­tions.

  • 2017. március 17., péntek, 10 óra
    Arató MiklósRényi Intézet és ELTE
    Többdimenziós függetlenségvizsgálat

    Vek­tor­vál­to­zók meg­fi­gye­lé­se ese­tén az egyik leg­ter­mé­sze­te­sebb kér­dés az, hogy va­jon a vek­to­rok ko­or­di­ná­tái füg­get­le­nek-e egy­más­tól. Bo­nyo­lult ko­pu­la­mo­del­lek il­lesz­té­se előtt min­den­kép­pen ér­de­mes ezt a prob­lé­mát is meg­vizs­gál­ni. Elő­adá­som­ban be­mu­ta­tom a je­len­leg leg­gyak­rab­ban hasz­nált Ge­nest–Qu­essy–Rém­il­lard-pró­bát, va­la­mint egy ál­ta­lunk ja­va­solt új tesz­tet. A pró­bák ere­jét kü­lön­bö­ző ko­pu­la csa­lá­do­kon és Tus­nády Gá­bor ál­tal ja­va­solt fel­té­te­les ex­po­nen­ci­á­lis mo­del­len el­vég­zett szi­mu­lá­ci­ó­kon mu­ta­tom be.

  • 2017. február 24., péntek, 10 óra
    Backhausz ÁgnesEötvös Loránd Tudományegyetem és Rényi Intézet
    Véletlen reguláris gráfok sajátvektorai

    Az elő­adás­ban a vé­let­len re­gu­lá­ris grá­fok sa­ját­vek­to­ra­i­nak el­osz­lá­sá­ra vo­nat­ko­zó ered­mé­nyek­ről lesz szó. A gráf­li­me­szek el­mé­le­té­nek fo­gal­ma­i­ból ki­in­dul­va, bi­zo­nyos ent­ró­pia­egyen­lőt­len­sé­ge­ken ke­resz­tül si­ke­rült be­lát­nunk, hogy a vé­let­len re­gu­lá­ris gráf tet­sző­le­ges sa­ját­vek­to­rá­ból egy vé­let­len ko­or­di­ná­tát vá­laszt­va a ka­pott el­osz­lás a nor­má­lis el­osz­lás­hoz tet­sző­le­ge­sen kö­zel van, ha a gráf mé­re­te elég nagy. Az elő­adás­ban ezt az ered­ményt is­mer­tet­jük né­hány ál­ta­lá­no­sí­tás­sal együtt, a bi­zo­nyí­tás főbb esz­kö­ze­it be­mu­tat­va. Sze­gedy Ba­lázzsal kö­zös mun­ka.

  • 2017. január 6., péntek, 10 óra
    Lugosi GáborPompeu Fabra University, Barcelona, Spanyolország
    Hogyan becsüljük meg egy valószínűségi változó várható értékét?

    \(n\) füg­get­len, azo­nos el­osz­lá­sú va­ló­szí­nű­sé­gi vál­to­zó alap­ján meg sze­ret­nénk be­csül­ni a vár­ha­tó ér­té­ket. Ta­lán meg­le­pő mó­don, ez a klasszi­kus és alap­ve­tő sta­tisz­ti­kai prob­lé­ma még min­dig nincs tel­je­sen meg­old­va. Eb­ben az elő­adás­ban olyan becs­lé­se­ket ke­re­sünk, ame­lyek hosszú far­kú el­osz­lá­sok ese­tén is szub-gausszi hi­bát ad­nak. A becs­lé­se­ket ki­ter­jeszt­jük nagy di­men­zi­ós te­rek­re és reg­resszi­ós prob­lé­mák­ra.

  • 2016. december 9., péntek
    Körmendi KristófSzegedi Tudományegyetem Bolyai Intézet
    Az utódeloszlás várható érték mátrixának becslése kritikus 2-típusos Galton--Watson-folyamatokban

    Egy 2-tí­pu­sos Gal­ton–Wat­son-fo­lya­ma­tot kri­ti­kus­nak ne­ve­zünk, ha az utód­el­osz­lás vár­ha­tó ér­ték mát­ri­xá­nak spekt­rál­su­ga­ra 1. Eb­ben az eset­ben a fo­lya­mat al­kal­mas át­ská­lá­zá­sá­ra tel­je­sül egy funk­ci­o­ná­lis ha­tár­el­osz­lás té­tel, ahol a ha­tár­el­osz­lás el­fa­jult egy az utód­el­osz­lás vár­ha­tó ér­ték mát­ri­xá­nak jobb ol­da­li Per­ron-vek­to­ra ál­tal meg­ha­tá­ro­zott egye­nes­re kon­cent­rá­ló­dik. Ezt az ész­re­vé­telt fel­hasz­nál­va be­ve­zet­jük a fo­lya­mat egy fel­bon­tá­sát, majd ezen fel­bon­tás se­gít­sé­gé­vel meg­ha­tá­roz­zuk a vár­ha­tó ér­ték mát­rix leg­ki­sebb négy­ze­tes becs­lé­sé­nek aszimp­to­ti­ká­ját.

  • 2016. december 2., péntek 11.00
    Nedényi FanniSzegedi Tudományegyetem Bolyai Intézet
    Elágazó folyamatok aggregációja

    Te­kint­sük egy diszk­rét ide­jű szto­chasz­ti­kus fo­lya­mat füg­get­len kó­pi­á­it. A fo­lya­ma­tok ele­mei így két in­dex­szel ren­del­kez­nek, egyik a kó­pi­át, má­sik az időt je­len­ti. Azt vizs­gál­juk, ho­gyan vi­sel­ke­dik az első \(N\) kó­pia \(n\)-edik idő­pon­tig vett, úgy­ne­ve­zett két­sze­res rész­let­össze­ge ezek­nek a vál­to­zók­nak. Au­to­reg­resszi­ós fo­lya­ma­tok ese­tén a fen­ti agg­re­gá­ci­ós prob­lé­mát D. Sur­ga­i­lis és társ­szer­zői már ko­ráb­ban vizs­gál­ták. Mi elő­ször az­zal az eset­tel fog­lal­ko­zunk, ami­kor a fo­lya­ma­tok sta­ci­o­ná­ri­us el­ága­zó fo­lya­ma­tok Po­is­son-el­osz­lá­sú be­ván­dor­lás­sal és Ber­no­ul­li utód­el­osz­lás­sal. Majd vé­let­le­nít­jük a Ber­no­ul­li utód­el­osz­lá­sok pa­ra­mé­te­rét, és az így ka­pott vé­let­le­ní­tett el­ága­zó fo­lya­ma­tok­kal is fog­lal­ko­zunk. Az el­ága­zó fo­lya­ma­tok ter­mé­sze­tes ál­ta­lá­no­sí­tá­sa a \(p\)-ed­ren­dű Gal­ton–Wat­son fo­lya­mat, ahol a fo­lya­mat kö­vet­ke­ző ele­me nem csak az azt meg­elő­ző egy, ha­nem \(p\) elem­től is függ­het, és mind az utód­el­osz­lás, mind a be­ván­dor­lás ál­ta­lá­nos. Mind­há­rom eset­ben az a cé­lunk, hogy a fen­ti rész­let­össze­gek vi­sel­ke­dé­sét le­ír­juk, ha a kó­pi­ák szá­ma, azaz \(N\), és az időt jel­ké­pe­ző \(n\) vég­te­len­hez tart va­la­mi­lyen sor­rend­ben, vagy együt­te­sen.

    [1] M. Bar­czy, F. Nedényi, and G. Pap. It­er­ated lim­its for ag­gre­ga­tion of ran­dom­ized INAR(1) processes with Pois­son in­no­va­tions. arXiv: 1509.05149, 2015.
    [2] F. Nedényi and G. Pap. It­er­ated scal­ing lim­its for ag­gre­ga­tion of ran­dom co­ef­fi­cient AR(1) and INAR(1) processes. Sta­tist. Probab. Lett., 118:16–23, 2016.
    [3] V. Pili­pauskaité and D. Sur­gailis. Joint tem­po­ral and con­tem­po­ra­ne­ous ag­gre­ga­tion of ran­dom-co­ef­fi­cient AR(1) processes. Sto­chas­tic Process. Appl., 124(2):1011–1035, 2014.

  • 2016. november 25., péntek 11.00
    Benke JánosSzegedi Tudományegyetem Bolyai Intézet
    Egyparaméteres lineáris késleltetett sztochasztikus differenciálegyenletek aszimptotikus statisztikai vizsgálata

    Le­gyen \((X(t))_{t\in[-r,T]}\) az aláb­bi li­ne­á­ris kés­lel­te­tett szto­chasz­ti­kus dif­fe­ren­ci­ál­egyen­let erős meg­ol­dá­sa: \[ \mathrm{d} X(t) = \vartheta \int_{[-r,0]} X(t + u) \, a(\mathrm{d} u) \, \mathrm{d} t +\mathrm{d} W(t), \] ahol \(a\) egy vé­ges elő­je­les mér­ték a \([-r, 0]\) in­ter­val­lu­mon. Cé­lunk foly­to­nos min­ta fel­té­te­le­zé­se mel­lett vizs­gál­ni a li­ke­li­ho­od függ­vény lo­ká­lis aszimp­to­ti­kus tu­laj­don­sá­ga­it.

    Az elő­adás első fe­lé­ben egy spe­ci­á­lis eset­tel fo­gunk fog­lal­koz­ni, ahol a kés­lel­te­tés egyen­le­tes a \([-1,0]\) in­ter­val­lu­mon, azaz ami­kor \(r = 1\) és \(a\) a Le­bes­gue-mér­ték. Ek­kor lo­ká­lis aszimp­to­ti­kus nor­ma­li­tás (LAN) tel­je­sül a \(\vartheta \in\bigl(-\frac{\pi^2}{2}, 0\bigr)\) pa­ra­mé­ter­tar­to­mány­ban,lo­ká­lis aszimp­to­ti­kus ke­vert nor­ma­li­tás (LAMN) a \(\vartheta \in\bigl(0,\infty\bigr)\) eset­ben és pe­ri­o­di­ku­san lo­ká­lis aszimp­to­ti­kus ke­vert nor­ma­li­tás (PLAMN) a \(\vartheta \in \bigl(-\infty, -\frac{\pi^2}{2}\bigr)\) tar­to­mány­ban. A kri­ti­kus \(-\frac{\pi^2}{2}\) és \(0\) pon­tok­ban lo­ká­lis aszimp­to­ti­kus kvad­ra­ti­ci­tás (LAQ) tel­je­sül.

    Ezt kö­ve­tő­en az ál­ta­lá­nos mo­dell ese­tén is­mer­te­tem az ered­mé­nye­ket, mely­ben már nincs esé­lyünk arra, hogy meg­ha­tá­roz­zuk exp­li­ci­ten a pa­ra­mé­ter­tar­to­má­nyo­kat, ahol a meg­fe­le­lő tu­laj­don­sá­gok tel­je­sül­nek. Azon­ban ele­gen­dő fel­té­te­le­ket tu­dunk adni arra, hogy mi­kor te­le­sül a LAN, LAMN, PLAMN, LAQ tu­laj­don­sá­gok va­la­me­lyi­ke.

    A fen­ti ered­mé­nyek kö­vet­kez­mé­nye, hogy a pa­ra­mé­ter ma­xi­mum li­ke­li­ho­od becs­lé­sé­nek aszimp­to­ti­kus vi­sel­ke­dé­sét is le tud­juk írni.

    [1] J. M. Benke, G. Pap, As­ymp­totic in­fer­ence for a sto­chas­tic dif­fer­en­tial equa­tion with uni­formly dis­trib­uted time de­lay, Jour­nal of Sta­tis­ti­cal Plan­ning and In­fer­ence 167 (2015), 182–192.

    [2] J. M. Benke, G. Pap, One-pa­ra­me­ter sta­tis­ti­cal model for lin­ear sto­chas­tic dif­fer­en­tial equa­tion with time de­lay, Sta­tis­tics.

  • 2016. november 18., péntek, 10 óra
    Szabó BotondLeiden University, Hollandia
    Bayes-i konfidencia halmazok megbízhatósága

    Az utób­bi évek­ben egy­re el­ter­jed­tebb lett a Ba­yes-i mód­sze­rek al­kal­ma­zá­sa kü­lön­bö­ző al­kal­ma­zott tu­do­mány te­rü­le­te­ken, pél­dá­ul pénz­ügy­ben, or­vo­si di­ag­nosz­ti­ká­ban, aszt­ro­nó­mi­á­ban és jár­vány­ku­ta­tás­ban. Egy, a gya­kor­la­ti szem­pont­ból kulcs­fon­tos­sá­gú elő­nye a Ba­yes-i sta­tisz­ti­ká­nak, hogy au­to­ma­ti­ku­san meg­ha­tá­roz­za a mód­szer bi­zony­ta­lan­sá­gát. A tech­ni­ka egy­re nö­vek­vő nép­sze­rű­sé­ge mel­lett azon­ban máig nem tisz­tá­zott, hogy mek­ko­ra mér­ték­ben le­het ben­ne meg­bíz­ni. Nem meg­fe­le­lő­en ka­lib­rált vagy ir­re­gu­lá­ris ese­tek­ben a Ba­yes-i bi­zony­ta­lan­ság ana­lí­zis túl­sá­go­san ma­ga­biz­tos, fél­re­ve­ze­tő ered­mé­nye­ket pro­du­kál­hat.

    A cik­künk­ben a Ba­yes-i mód­sze­re­ken ala­pu­ló kon­fi­den­cia ered­mé­nyek aszimp­to­ti­kus meg­bíz­ha­tó­sá­gát vizs­gál­juk ál­ta­lá­nos eset­ben. Meg­mu­tat­juk, hogy ter­mé­sze­tes, nem túl erős fel­té­te­lek mel­lett a Ba­yes-i mód­sze­rek klasszi­kus (frek­ven­tis­ta) szem­pont­ból meg­bíz­ha­tó kon­fi­den­cia ered­ményt ad­nak. Az abszt­rakt té­telt ez­után spe­ci­fi­kus mo­del­lek­re al­kal­maz­zuk, pél­dá­ul nem­pa­ra­mé­te­res reg­resszi­ó­ra, sű­rű­ség­függ­vény­becs­lés­re és klasszi­fi­ká­ci­ó­ra.

    Az elő­adás a Ju­dith Rous­se­u­val ké­szí­tett kö­zös mun­kán ala­pul.

  • 2016. október 28., péntek, 10 óra
    Berkes IstvánRényi Intézet és TU Graz
    Trigonometrikus sorok véletlen frekvenciákkal

    Pa­ley és Zyg­mund klasszi­kus cik­kek egy so­ro­za­tá­ban (“Some ran­dom se­ri­es of func­tions I-III”, 1931/​32) meg­kezd­ték vé­let­len együtt­ha­tó­jú tri­go­no­met­ri­kus so­rok vizs­gá­la­tát, mely­ből mára egy szá­mos mély ered­ményt tar­tal­ma­zó, szép és lé­nye­gé­ben tel­jes el­mé­let jött lét­re. Ugyan­ak­kor vé­let­len frek­ven­ci­á­jú tri­go­no­met­ri­kus so­rok­nak nem lé­te­zik rend­sze­res el­mé­le­te an­nak el­le­né­re, hogy ezek a so­rok dön­tő sze­re­pet ját­sza­nak (pl. el­len­pél­dák konst­ru­á­lá­sá­ra) az ana­lí­zis­ben, szám­el­mé­let­ben, kom­bi­na­to­ri­ká­ban és va­ló­szí­nű­ség­szá­mí­tás­ban. Az elő­adás cél­ja vé­let­len frek­ven­ci­á­jú tri­go­met­ri­kus so­rok­ra vo­nat­ko­zó né­hány ál­ta­lá­nos ered­mény iga­zo­lá­sa, mely hoz­zá­já­rul­hat egy rend­sze­res el­mé­let kez­de­te­i­hez.

  • 2016. október 14., péntek, 9 óra
    Bolla MariannaBME TTK Matematikai Intézet
    Növekvő gráfsorozatok általánosított kvázirandom tulajdonságai

    Álta­lá­no­sí­tott vé­let­len gráf­so­ro­za­tok (az Er­dős–-Ré­nyi vé­let­len gráf \(k\)-osz­tá­lyos ál­ta­lá­no­sí­tá­sai) majd­nem biz­tos tu­laj­don­sá­gai is­mer­tek. Ilye­nek pl. a kö­vet­ke­zők: a nor­mált ad­ja­cen­cia­mát­rix­nak van k struk­tu­rá­lis sa­ját­ér­té­ke, a hoz­zá­juk tar­to­zó sa­ját­vek­to­rok­kal a csú­csok jól klasz­te­re­sít­he­tők; a \(k\)-ré­szes diszk­re­pan­cia szig­ni­fi­kán­san ki­sebb az ala­cso­nyabb ren­dű­ek­nél; a részg­rá­fok aszimp­to­ti­lus­an re­gu­lá­ri­sak, a pá­ros részg­rá­fok pe­dig aszimp­to­ti­lus­an bi­re­gu­lá­ri­sak.

    Ar­ról lesz szó, hogy a szto­chasz­ti­kus mo­dell­től füg­get­le­nül a fen­ti­ek­hez ha­son­ló tu­laj­don­sá­gok ek­vi­va­len­sek Lo­vász–-Sós (J. Comb. The­ory B, 2008) ál­ta­lá­no­sí­tott kvá­zi­ran­dom gráf de­fi­ní­ci­ó­já­val, ha a csú­csok szá­ma tart a vég­te­len­be a klasz­ter­mé­re­tek­re tett ki­egyen­sú­lyo­zott­sá­gi fel­té­te­lek mel­lett. A \(k = 1\) eset­ben bő iro­dal­ma van a kvá­zi­ran­dom tu­laj­don­sá­gok ek­vi­va­len­ci­á­já­nak (Bollo­bás, Tho­mas­son, Chung, Gra­ham, Wil­son, 1987-2008). A de­ter­mi­nisz­ti­kus, \(k>1\) eset­ben az ek­vi­va­len­ci­á­kat sok­kal ne­he­zebb iga­zol­ni, néha csak imp­li­ká­ci­ó­kat tu­dunk bi­zo­nyí­ta­ni. Az ered­mé­nyek egy ré­sze Bo­jan Mo­har­ral kö­zös.

    Ezek fé­nyé­ben egy nagy, va­lós élet­be­li gráf­ra úgy te­kint­he­tünk, mint egy fej­lő­dő so­ro­zat pil­la­na­tá­ra, és spekt­rá­lis tu­laj­don­sá­ga­i­ból (po­li­nom idő­ben) kö­vet­kez­tet­he­tünk a (po­li­nom idő­ben nem meg­ha­tá­roz­ha­tó) mi­ni­má­lis több­ré­szes diszk­re­pan­ci­á­já­ra, ami ké­zen­fek­vő klasz­te­re­zé­si kri­té­ri­um. A sa­ját­vek­to­rok­kal egy­ben konst­ruk­ci­ót ka­punk az op­ti­má­lis \(k\)-par­tí­ci­ó­ra, a sa­ját­ér­té­kek alap­ján pe­dig az op­ti­má­lis \(k\)-ra. Ez­zel a spekt­rá­lis klasz­te­re­zés he­u­risz­ti­kái el­mé­le­ti meg­ala­po­zást nyer­nek.

  • 2016. szeptember 2., péntek, 10 óra
    Pap GyulaSzegedi Tudományegyetem
    Kétfaktoros affin diffúziók statisztikai vizsgálata

    Olyan Mar­kov-fo­lya­ma­to­kat ne­vez­nek af­fin fo­lya­ma­tok­nak, ame­lyek­nek a ka­rak­te­risz­ti­kus ex­po­nen­se af­fin li­ne­á­ris mó­don függ a de­ter­mi­nisz­ti­kus kez­de­ti ér­ték­től. Ezek a fo­lya­ma­tok az ál­ta­lá­no­sí­tott Orns­tein–Uh­len­beck-fo­lya­ma­tok­nak és a foly­to­nos ál­la­pot­te­rű el­ága­zó fo­lya­ma­tok­nak a kö­zös ál­ta­lá­no­sí­tá­sai, és sok al­kal­ma­zá­si le­he­tő­sé­gük is­mert, el­ső­sor­ban a pénz­ügyi ma­te­ma­ti­ká­ban, pél­dá­ul szto­chasz­ti­kus vo­la­ti­li­tás mo­del­lek­ben. Eb­ben az elő­adás­ban az úgy­ne­ve­zett két­fak­to­ros af­fin dif­fú­zi­ók drift-pa­ra­mé­te­re­i­nek becs­lé­se­i­ről lesz szó, és azok aszimp­to­ti­kus vi­sel­ke­dé­sé­ről. Per­sze elő­jön a sta­ci­on­ari­tás és az er­go­di­ci­tás kér­dé­se is.

  • 2016. június 10., péntek, 10 óra
    Józsa MónikaUniversity of Groningen, Hollandia
    Sztochasztikus koordinátoros reprezentáció és Granger-kauzalitás

    Az elő­adá­som­ban szto­chasz­ti­kus fo­lya­ma­tok li­ne­á­ris ál­la­pot­tér-rep­re­zen­tá­ci­ó­já­val fog­lal­ko­zom, ahol a fo­lya­mat maga egy li­ne­á­ris rend­szer ki­me­ne­te­le. A prob­lé­ma a kö­vet­ke­ző: ha egy ál­la­pot­te­res rend­szer­ben a rend­szert le­író mát­ri­xok blokk­há­rom­szög ala­kú­ak, ak­kor az mi­lyen tu­laj­don­sá­got mu­tat a ki­me­ne­ti fo­lya­mat­ban. Bi­zo­nyos eset­ben egy ilyen rep­re­zen­tá­ció ek­vi­va­lens az­zal, hogy a ki­me­ne­ti fo­lya­mat egyik kom­po­nen­se nem okoz­za (Grang­er ér­te­lem­ben) a má­si­kat. Az er­ről szó­ló ered­mény­re ala­poz­va Grang­er-ka­u­za­li­tás­sal le­ír­ha­tó egy úgy­ne­ve­zett ko­or­di­ná­to­ros rep­re­zen­tá­ció, ami egy egy­sze­rű rend­szer­struk­tú­ra, de szto­chasz­ti­kus eset­ben ke­vés­bé ku­ta­tott. Az ered­mé­nyek konst­ruk­tí­vak és így al­kal­ma­sak Grang­er-ka­u­za­li­tás, il­let­ve ko­or­di­ná­to­ros struk­tú­ra tesz­te­lé­sé­re.

  • 2016. május 13., péntek, 10 óra
    Kolossváry IstvánRényi Intézet
    Véletlen apollóniai hálózatok átmérője

    Vé­let­len apol­ló­ni­ai há­ló­za­tok az ap­po­ló­ni­ai kör­pa­ko­lás prob­lé­má­já­ból ere­dez­tet­he­tők. A gráf struk­tú­rá­ja egy \(d\)-adi­kus fa ext­ra rö­vi­dí­tő élek­kel. A fá­nak sok kö­zel leg­mé­lyebb ágán le­het az át­lag­nál több rö­vi­dí­tő él. Meg­mu­tat­juk, mi­ként ver­sen­ge­nek ezek az át­mé­rő meg­ha­tá­ro­zá­sá­hoz. Kö­zös mun­ka Kom­já­thy Jú­li­á­val és Vágó La­jos­sal.

  • 2016. április 29., péntek, 10 óra
    Bartosz StawiarskiCracow University of Technology, Krakkó, Lengyelország
    Non-stochastic fraction-of-time approach to signal analysis

    We will pre­sent an al­ter­na­tive app­ro­ach to analy­zing real sig­nals. The Frac­ti­on-Of-Time (FOT) fra­me­work was con­ce­i­ved in early 2000’s by Les­kow and Na­po­li­ta­no. Gi­ven a sig­nal \[\{x(u): u \in [t, t+T]\},\] th­res­hold \(\xi \in \mathbb R\) and a (Le­bes­gue) me­a­sure \(\mu\), the start­ing point of the con­cept is the fol­lo­wing time aver­age: \[F_{T,x}(t, \xi)=\frac1T \int_{t}^{t+T} \mathbf{1}_{(x(u)\leq \xi)} du.\]

    With the abo­ve de­fi­ni­ti­on, se­ve­ral as­pects of the FOT app­ro­ach will be dis­cus­sed. Firstly, the asymp­to­tic be­ha­vi­or of \(F_{T,x}\) with \(T\rightarrow\infty\), which le­ads to a class of so-called re­la­ti­vely me­as­urab­le func­tions. Next, some the­o­re­ti­cal re­sults will be bri­efly recalled, e.g. cent­ral li­mit the­or­em in the FOT con­text. The Frac­ti­on-Of-Time app­ro­ach has in­dis­put­ab­le ad­van­ta­ges over the sto­chas­tic set-up. In the lat­ter case, qu­i­te of­ten hard-to-check as­sumpt­ions are im­po­s­ed on the pro­cess, like mix­ing con­di­tions. We will also pre­sent app­li­ca­ti­o­nal po­ten­ti­al of the FOT app­ro­ach in eco­no­met­rics, us­e­ful in risk ma­nag­ement (re­de­fi­ni­ti­on of Va­lue-at-Risk). Fi­n­ally, the re­cently de­vel­oped chan­ge-point analy­sis in the FOT con­text will be ment­ion­ed to­get­her with si­mu­la­ti­on stu­di­es, car­ried out on disc­re­tely samp­led sig­nals.

  • 2016. április 22., péntek, 10 óra
    Molnár-Sáska GáborMorgan Stanley
    Amerikai opció

    Ame­ri­kai op­ci­ók na­gyon sok he­lyen je­len­nek meg a pénz­ügyi vi­lág­ban. Az elő­adá­son be­mu­ta­tom a pi­a­con leg­in­kább hasz­nált meg­kö­ze­lí­tést, a Long­staff-Sch­wartz mód­szert.

  • 2016. április 8., péntek, 10 óra
    Prokaj VilmosELTE TTK Valószínűségelméleti és Statisztika Tanszék
    A Cantelli-sejtésről Kleptsyn és Kurtzmann alapján

    Le­gye­nek \(X\) és \(Y\) füg­get­len stan­dard nor­má­li­sok és te­kint­sük az \(X+\varphi(X) Y\) vál­to­zót, ahol \(\varphi\geq0\). Can­tel­li 1918-ban azt a sej­tést fo­gal­maz­ta meg, hogy ez a vál­to­zó csak ak­kor nor­má­lis el­osz­lá­sú, ha \(\varphi\) kons­tans. Azon­ban ez nincs így. Kleptsyn és Kurtz­mann cik­ke alap­ján is­mer­te­tem az el­len­pél­da konst­ruk­ci­ó­ját.

  • 2016. április 1., péntek, 10 óra
    Tim HulshofTU Eindhoven, Hollandia
    Higher order corrections for anisotropic bootstrap percolation

    Boot­strap per­cola­ti­on is a very simp­le mo­del for growth from a ran­dom ini­ti­al con­fi­gu­ra­ti­on on fi­ni­te lat­ti­ces. The mo­del has many app­li­ca­tions, for ins­tance to mo­del the spre­ad of in­fec­tions and mag­nets at low tem­pe­ra­tu­res, to name two, but it is also in­ter­est­ing from a pu­rely ma­the­ma­ti­cal pers­pec­tive. The mo­del pa­ra­me­ter has a cri­ti­cal va­lue, at which the be­ha­vi­o­ur changes shar­ply. One in­ter­est­ing fea­tu­re of boot­strap per­cola­ton is a phe­no­me­non called the “boot­strap pa­ra­dox” which re­la­tes to a big disc­re­pancy bet­ween nu­me­ri­cal and the­o­re­ti­cal est­ima­tes of the cri­ti­cal va­lue of boot­strap per­cola­ti­on mo­dels.

    I will dis­cuss re­cent work in which we give the most acc­ura­te the­o­re­ti­cal est­ima­te for the cri­ti­cal va­lue of any boot­strap mo­del to date, com­pa­re it with new nu­me­ri­cal est­ima­tes, and show how it (ten­ta­ti­vely) re­sol­ves the pa­ra­dox. This talk is bas­ed on jo­int work with Hugo Du­mi­nil-Co­pin, Aer­no­ut van En­ter, and Rob Mor­ris, and on work with Ro­bert Fitz­ner.

  • 2016. március 18., péntek, 10 óra
    Varga Katalin
    Makroprudenciális politika támogatása matematikai modellekkel

    Be­mu­ta­tom az MNB mak­ro­pru­den­ci­á­lis po­li­ti­ká­já­nak leg­fon­to­sabb te­rü­le­te­it és az itt al­kal­ma­zott mód­sze­re­ket. Rész­le­te­sen is­mer­te­tem a ma­gyar Rend­szer­szin­tű pénz­ügyi stressz­in­dex (REP­SI) mű­kö­dé­sét és to­vább­fej­lesz­té­sé­nek irá­nya­it.

  • 2016. március 11., péntek, 10 óra 30 perc
    Baran SándorDebreceni Egyetem, Alkalmazott Matematika és Valószínűségszámítás Tanszék
    Valószínűségi modellek a szélsebesség előrejelzésére

    Nap­ja­ink­ban a me­te­o­ro­ló­gi­ai szol­gá­la­tok je­len­tős ré­sze dol­go­zik en­semb­le elő­re­jel­zé­sek­kel, ami­ket úgy ál­lí­ta­nak elő, hogy a nu­me­ri­kus idő­já­rás elő­re­jel­ző mo­del­le­ket kü­lön­bö­ző kez­de­ti fel­té­te­lek­kel, vagy kü­lön­bö­ző pa­ra­mé­te­re­zés­sel fut­tat­ják. Az így ka­pott elő­re­jel­zés-csa­lád szó­ró­dá­sa azon­ban több­nyi­re túl ki­csi és az elő­re­jel­zé­sek nem meg­fe­le­lő­en ka­lib­rál­tak, mely hi­bát a sta­tisz­ti­kai utó­fel­dol­go­zás hi­va­tott kor­ri­gál­ni.

    Elő­adá­som­ban a szél­se­bes­ség en­semb­le elő­re­jel­zé­sei sta­tisz­ti­kai ka­lib­rá­lá­sá­nak két ál­ta­lá­no­san el­ter­jedt mód­sze­rét, a BMA (Ba­ye­si­an Mo­del Aver­ag­ing) és az EMOS (En­semb­le Mo­del Out­put Sta­tis­tics) tech­ni­kát sze­ret­ném is­mer­tet­ni, meg­vizs­gál­va ezek ha­té­kony­sá­gát kü­lön­bö­ző en­semb­le elő­re­jel­ző rend­sze­rek ese­tén (ALA­DIN-HU­NEPS, Uni­ver­sity of Wa­shing­ton Me­sos­cale En­semb­le, ECMWF en­semb­le). Mind­két mód­szer az elő­re­jel­zen­dő idő­já­rá­si mennyi­ség sű­rű­ség­függ­vé­nyét ál­lít­ja elő, de a két tech­ni­ka lé­nye­ge­sen el­tér egy­más­tól. BMA ese­tén a klasszi­kus meg­kö­ze­lí­tés a gam­ma el­osz­lá­sok ke­ve­ré­ké­vel való mo­del­le­zés [5], de emel­lett lé­te­zik egy cson­kí­tott nor­má­li­sok ke­ve­ré­kén ala­pu­ló mo­dell is [1], ami leg­alább ennyi­re ha­té­kony és ke­vés­bé szá­mí­tás­igé­nyes. A BMA mo­del­lel szem­ben az EMOS mód­szer egyet­len el­osz­lást hasz­nál, mely­nek csu­pán a pa­ra­mé­te­rei füg­ge­nek az en­semb­le tag­ja­i­tól. Szél­se­bes­ség ese­tén há­rom kü­lön­bö­ző el­osz­lás ver­seng egy­más­sal: a cson­kí­tott nor­má­lis [6], az ál­ta­lá­no­sí­tott ext­rém ér­ték [4] és a log­nor­má­lis [2], de vizs­gál­ják ezek kü­lön­fé­le mó­don való együt­tes al­kal­ma­zá­sát is (pl. [2,3,4]).


    1. Baran, S., Prob­a­bilis­tic wind speed fore­cast­ing us­ing Bayesian model av­er­ag­ing with trun­cated nor­mal com­po­nents. Com­put. Stat. Data. Anal. 75 (2014), 227-238.

    2. Baran, S., Lerch, S., Log-nor­mal dis­tri­b­u­tion based EMOS mod­els for prob­a­bilis­tic wind speed fore­cast­ing. Q. J. R. Me­te­o­rol. Soc. 141 (2015), 2289-2299.

    3. Baran, S., Lerch, S., Mix­ture EMOS model for cal­i­brat­ing en­sem­ble fore­casts of wind speed. En­vi­ron­metrics, doi:10.1002/​env.2380.

    4. Lerch, S., Tho­rarins­dot­tir, T. L. (2013) Com­par­i­son of non-ho­mo­ge­neous re­gres­sion mod­els for prob­a­bilis­tic wind speed fore­cast­ing. Tel­lus A 65 21206, doi:10.3402/​tel­lusa.v65i0.21206.

    5. Sloughter, J. M., Gneit­ing, T., Raftery, A. E., Prob­a­bilis­tic wind speed fore­cast­ing us­ing en­sem­bles and Bayesian model av­er­ag­ing. J. Amer. Stat. As­soc. 105 (2010), 25-37.

    6. Tho­rarins­dot­tir, T. L., Gneit­ing, T., Prob­a­bilis­tic fore­casts of wind speed: en­sem­ble model out­put sta­tis­tics by us­ing het­eroscedas­tic cen­sored re­gres­sion. J. Roy. Sta­tist. Soc. Ser. A 173 (2010), 371-388.

  • 2016. március 4., péntek, 10 óra
    Hári NorbertMorgan Stanley
    Partnerkockázat árazás

    Az elő­adás be­te­kin­tést nyújt a part­ner­koc­ká­zat-ki­tett­ség­ből ere­dő “va­lu­a­ti­on ad­just­ment”-ek kö­zül az el­mé­le­ti­leg is el­fo­ga­dott CVA (cre­dit va­lu­a­ti­on ad­just­ment) ára­zás­ba, mind gya­kor­la­ti és el­mé­le­ti meg­kö­ze­lí­tés­ből.

  • 2016. február 26., péntek, 10 óra
    Garay JózsefELTE TTK Biológiai Intézet
    Irigység a darwini evolúció szemszögéből

    Mi­lyen sze­lek­ci­ós szi­tu­á­ci­ó­ban:
    (a) si­ke­res az irigy­ség?
    (b) és mi­kor nem si­ke­res az irigy­ség?

  • 2015. december 11., péntek, 10 óra
    Horváth IllésMTA-BME Informatikai Rendszerek Kutatócsoport
    Szemi-Markov populációs folyamatok vizsgálata

    Kurtz té­te­le sze­rint (meg­fe­le­lő fel­té­te­lek tel­je­sü­lé­se ese­tén) Mar­kov po­pu­lá­ci­ós fo­lya­ma­tok vi­sel­ke­dé­se nagy po­pu­lá­ció ese­tén jól kö­ze­lít­he­tő egy de­ter­mi­nisz­ti­kus kö­zön­sé­ges dif­fe­ren­ci­ál­egyen­let-rend­szer meg­ol­dá­sá­val. En­nek ál­ta­lá­no­sí­tá­sát vizs­gál­juk olyan fo­lya­ma­tok­ra, ahol az egye­dek nem csak mark­ovi, ha­nem ál­ta­lá­nos át­me­ne­te­ket is vé­gez­het­nek; ilyen­kor a rend­szer vi­sel­ke­dé­se egy de­ter­mi­nisz­ti­kus kés­lel­te­tett dif­fe­ren­ci­ál­egyen­let-rend­szer meg­ol­dá­sá­val kö­ze­lít­he­tő.

  • 2015. december 4., péntek, 10 óra
    Galicza PálKözép-Európai Egyetem
    Rekonstrukció spinrendszerekben ritka részhalmazokról

    Itai Ben­ja­mi­ni kér­dez­te, hogy kri­ti­kus per­ko­lá­ció ese­tén az \(n\times n\)-es négy­ze­ten lé­te­zik-e olyan kis (\(o(n^2)\) nagy­sá­gú) rész­hal­maz, amely aszimp­to­ti­ku­san po­zi­tív mennyi­sé­gű in­for­má­ci­ót ad a bal–jobb át­me­net­ről. Elő­ször ezt a kér­dést vá­la­szol­juk meg egy egy­sze­rű trükk se­gít­sé­gé­vel, ami a Fo­u­ri­er– Wal­sh-transz­for­má­ci­ón alap­szik. Az ún. Ef­ron–Ste­in-de­kom­po­zí­ci­ón ke­resz­tül a mód­szer ál­ta­lá­no­sít­ha­tó szor­zat­mér­té­kek­re, és így ered­mé­nye­ket ka­punk iid vál­to­zók bi­zo­nyos fak­to­ra­i­ra, mint pél­dá­ul a szub­kri­ti­kus Ising-mo­dell­re. Pete Gá­bor­ral kö­zös mun­ka.

  • 2015. november 27., péntek, 10 óra
    Ambrus GergelyMTA Rényi Intézet
    Véletlen ponthalmazok és határalakjaik

    Az elő­adás­ban a kö­vet­ke­ző prob­lé­mát vizs­gál­juk. Le­gyen \(X_n\) egy \(n\) füg­get­len, vé­let­len pont­ból álló hal­maz, ame­lye­ket va­la­mi­lyen rög­zí­tett \(\mathbb{R}^d\)-beli el­osz­lás sze­rint vá­lasz­tunk. Ti­pi­kus pél­da, ha egy kon­vex sík­le­me­zen egyen­le­tes el­osz­lást ve­szünk. A vé­let­len pon­tok szá­mos aszimp­to­ti­kus tu­laj­don­sá­gát vizs­gál­ták már az el­múlt több, mint 100 év so­rán. Mi a pon­tok ál­tal meg­ha­tá­ro­zott kon­vex po­li­tó­po­kat ta­nul­má­nyoz­zuk. Bá­rány Imre 1999-ben meg­mu­tat­ta, hogy egy sík­be­li kon­vex le­mez­ről egyen­le­te­sen vá­laszt­va a pon­to­kat, az ál­ta­luk meg­ha­tá­ro­zott kon­vex sok­szö­gek dön­tő több­sé­ge egy adott kon­vex hal­maz kö­ze­lé­ben he­lyez­ke­dik el. Ezt az ered­ményt ter­jeszt­jük ki a sík­be­li nor­má­lis el­osz­lás ese­té­re. Több vo­nat­ko­zó prob­lé­má­ról is szó fog esni.

  • 2015. október 16., péntek, 10 óra
    Gerencsér BalázsMTA Rényi Intézet
    Átlagolás a gráfon problémás csatornákon

    Azt az ál­ta­lá­nos kér­dést ta­nul­má­nyoz­zuk, ho­gyan tud­ják egy gráf csú­csai ki­szá­mol­ni a rá­juk írt szá­mok át­la­gát bi­zo­nyos fel­té­te­lek mel­lett. Amennyi­ben a csú­csok aszink­ron kom­mu­ni­kál­nak, egy ele­gáns meg­ol­dás a push-sum al­go­rit­mus. Ez per­sze rosszab­bul fog mű­köd­ni, ha a kül­dött üze­ne­tek néha el is vesz­nek; ezt vizs­gál­juk, hogy mennyit vesz­tünk.

  • 2015. október 9., péntek, 10 óra
    Kornyik MiklósELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Véletlen szimmetrikus mátrix karakterisztikus polinomjának várható értéke és az Hermite polinom kapcsolata; az Hermite polinom gyökeinek hatványösszegei

    A vé­let­len mát­ri­xok­kal Wig­ner Jenő és John Wis­hart kezd­tek el be­ha­tób­ban fog­lal­koz­ni a 20. szá­zad első fe­lé­ben. Wis­hart sta­tisz­ti­kai ol­dal­ról kö­ze­lí­tet­te meg a té­ma­kört, nor­má­lis el­osz­lá­sú min­ták­ból gyár­tott ko­va­ri­an­cia mát­rix becs­lé­sé­nek el­osz­lá­sát, szá­mol­ta ki 1928-ban. Wig­ner a mag­fi­zi­ká­ban al­kal­maz­ta a vé­let­len mát­ri­xo­kat ne­héz­ato­mok spekt­ru­má­nak becs­lé­se­kor. 1955-ben tet­te köz­zé az ún. fél­kör sza­bály té­te­lét, mely a ta­pasz­ta­la­ti sa­ját­ér­ték­el­osz­lás kon­ver­gen­ci­á­já­ról és an­nak ha­tár­el­osz­lá­sá­ról szól. Az elő­adás so­rán is­mer­tet­ni fo­gom a kü­lön­bö­ző vé­let­len mát­rix osz­tá­lyo­kat és azok jel­lem­ző­it, majd em­lí­tést te­szek a té­má­ban el­ért je­len­tő­sebb ered­mé­nyek­ről, me­lyek a ta­pasz­ta­la­ti sa­ját­ér­ték-el­osz­lá­sok ha­tár­el­osz­lá­sá­ról, a ma­xi­má­lis sa­ját­ér­ték aszimp­to­ti­ká­já­ról és a szom­szé­dos sa­ját­ér­té­kek kö­zöt­ti tá­vol­sá­gok el­osz­lá­sá­ról szól­nak. A fen­ti ered­mé­nyek mind füg­get­len ele­mű mát­ri­xok ese­té­ben áll­nak fent. Szó lesz még ar­ról, hogy mit le­het mon­da­ni ab­ban az eset­ben, ha gyen­gí­tünk a füg­get­len­sé­gen.

  • 2015. szeptember 23., szerda, 14:15, D 2-502 [szokatlan időpont és helyszín]
    Eduardo CanabarroMorgan Stanley
    Models and model risk in banking

    I will descri­be the main types and pur­pos­es of the qu­an­ti­ta­tive mo­dels that are cur­rently used by ma­jor in­ter­na­ti­o­nal banks. Then I will exa­mi­ne the key mo­del risks as­so­ci­a­ted with each type of mo­del and I will add­ress some of the mis­con­cept­ions. I will to­uch on the need for clear and app­rop­ria­te of the com­mu­ni­ca­ti­on on mo­del-re­la­ted is­sues wit­hin the or­ga­ni­za­ti­on. I will dis­cuss the es­sen­ti­al cha­rac­te­r­is­tics of a good mo­deler. All the­se in the con­text of the risk ma­nag­ement en­vi­ron­ment post 2008.

    Az elő­adó­ról. Edu­ar­do is the Ma­nag­ing Di­rec­tor, Glo­bal Head of Risk Analy­tics in the Firm’s Risk Ma­nag­ement or­ga­ni­za­ti­on. He is res­pon­sib­le for the de­ve­lop­ment and imp­le­men­ta­ti­on of the firm’s risk me­a­sure­ment mo­dels for mar­ket, cre­dit, ope­ra­ti­o­nal risks, stress test­ing (DFAST/​CCAR) and eco­no­mic ca­p­ital; for the va­li­da­ti­on of the bank’s pri­cing mo­dels; and for the cal­cu­la­ti­on of the mo­del-bas­ed re­gu­la­to­ry ca­p­ital me­a­sures. Pri­or to Mor­gan Stan­ley, he has wor­ked at Leh­man Bro­thers, Gold­man Sachs and Sa­lo­mon Bro­thers in va­ri­o­us qu­an­ti­ta­tive re­se­arch and risk ma­nag­ement ca­pa­ci­ti­es sin­ce 1993. Edu­ar­do’s qu­an­ti­ta­tive re­se­arch has cont­ri­bu­ted to the for­mu­la­ti­on of the Ba­sel Com­mit­te­e’s fra­me­works used to as­sess re­gu­la­to­ry ca­p­ital on coun­ter­par­ty cre­dit risk and trad­ing ac­ti­vi­ti­es. He is a mem­ber of va­ri­o­us wor­king gro­ups at ISDA, IIF, SIF­MA and TCH as well as of the Board of Di­rec­tors of the In­ter­na­ti­o­nal As­so­ci­a­ti­on of Qu­an­ti­ta­tive Fi­nance (IAQF). Edu­ar­do re­ce­i­ved PhD and MS deg­rees in Fi­nance from the Uni­ver­sity of Ca­li­for­nia at Berke­ley, USA. He re­ce­i­ved deg­rees in El­ectri­cal En­gi­ne­e­ring and MBA in Fi­nance from the Fe­de­ral Uni­ver­sity of RGS, Bra­zil.

  • 2015. szeptember 11., péntek, 10 óra
    Backhausz ÁgnesELTE TTK, Rényi Intézet
    Factor of i.i.d. folyamatok csúcstranzitív gráfokon

    Az elő­adás­ban fac­tor of i.i.d. fo­lya­ma­tok kor­re­lá­ci­ó­já­nak le­csen­gé­sé­re és a kor­re­lá­ció­struk­tú­rá­hoz tar­to­zó spekt­rál­mér­ték jel­lem­zé­sé­re vo­nat­ko­zó ered­mé­nye­ket is­mer­te­tünk. Ezek a vé­le­ten fo­lya­ma­tok úgy ke­let­kez­nek, hogy egy (vég­te­len) csúcs­tran­zi­tív gráf csú­csa­i­ra elő­ször füg­get­len azo­nos el­osz­lá­sú va­ló­szí­nű­sé­gi vál­to­zó­kat te­szünk, majd min­den csúcs­ban (mint gyö­kér­ben) al­kal­maz­zuk ugyan­azt a függ­vényt, mely gyö­ke­res cím­ké­zett grá­fok­hoz ren­del egy szá­mot in­va­ri­áns mó­don. A fac­tor of i.i.d. fo­lya­ma­tok a vé­let­len re­gu­lá­ris grá­fok vizs­gá­la­ta mel­lett er­go­d­el­mé­le­ti és szá­mí­tás­tu­do­má­nyi szem­pont­ból is ér­de­ke­sek le­het­nek. Sze­gedy Ba­lázzsal és Vi­rág Bá­lint­tal kö­zös mun­ka.

  • 2015. június 19., péntek
    Süli Balázs MártonELTE TTK Valószínűségelméleti és Statisztika Tanszék

    A ho­zam­gör­be-mo­del­le­zés­hez kap­cso­lo­dó leg­fon­to­sabb fo­gal­mak és el­ter­jedt mód­sze­rek fel­idé­zé­se, mint pél­dá­ul a spline vagy a Nel­son-Sie­gel Sven­s­son mo­dell­csa­lád. A Py­thon kör­nye­zet­ben meg­írt al­go­rit­mu­sok is­mer te­té­se. Va­lós 6000 köt­vényt át­fo­gó Blo­om­berg ada­tok­ra való al­kal­ma­zás ered­mé­nye­i­nek be­mu­ta­tá­sa, mód­sze­rek össze­ha­son­lí­tá­sa. Konk­lú­zió és to­váb­bi ér­de­kes le­he­tő­sé­gek a té­má­ban.

  • 2015. június 12., péntek, 10 óra 30 perc
    Ispány MártonDebreceni Egyetem
    Kritikus elágazó folyamatok bevándorlással változó környezetben

    A kri­ti­kus, azaz ami­kor az utód­el­osz­lás vár­ha­tó ér­té­ke 1, el­ága­zó fo­lya­ma­tok be­ván­dor­lás­sal aszimp­to­ti­kus vi­sel­ke­dé­se jól is­mert. Wei és Win­nic­ki adott dif­fú­zi­ós app­ro­xi­má­ci­ót, ami­kor az utód­el­osz­lás szó­rá­sa szi­go­rú­an po­zi­tív. Az így ka­pott fo­lya­mat több ol­dal­ról is is­mert, ne­ve­zik négy­zet­gyök, négy­ze­tes Bes­sel vagy CIR fo­lya­mat­nak is. Aszimp­to­ti­ku­san el­tű­nő szó­rá­sú utód­el­osz­lás ese­tén Is­pány, Pap és van­Zu­ij­len írta le a fluk­tu­á­ci­ós vi­sel­ke­dést egy Orns­tein–Uh­len­beck fo­lya­mat for­má­já­ban. A mo­dell­nek több ál­ta­lá­no­sí­tá­sa is le­het­sé­ges, egy­aránt vizs­gál­nak el­ága­zó fo­lya­ma­to­kat vál­to­zó vagy vé­let­len kör­nye­zet­ben. Az elő­adás­ban vál­to­zó kör­nye­ze­tet fo­gunk te­kin­te­ni, ami­kor a fo­lya­mat fő pa­ra­mé­te­rei, ún. az utód és be­ván­dor­lá­si el­osz­lás vár­ha­tó ér­té­ke és szó­rá­sa ge­ne­rá­ci­ó­ról ge­ne­rá­ci­ó­ra vál­to­zik. Leg­nyil­ván­va­lóbb pél­da erre, ami­kor a fo­lya­mat pe­ri­o­di­kus vi­sel­ke­dést mu­tat, mond­juk úgy, hogy a be­ván­dor­lás pe­ri­o­di­kus. Egy ilyen fo­lya­ma­tot kö­zel kri­ti­kus­nak ne ve­zünk, ha az utód­el­osz­lás idő­ben vál­to­zó vár­ha­tó ér­té­ke 1-hez kon­ver­gál. Az elő­adás­ban aszimp­to­ti­kus ered­mé­nye­ket bi­zo­nyí­tunk ilyen fo­lya­ma­tok­ra kü­lön­bö­ző fel­té­te­lek mel­lett. Az ered­mé­nyek­ből ki­de­rül, hogy a fen­ti klasszi­kus ha­tár­fo­lya­ma­tok mel­lett to­váb­bi ér­de­kes dif­fú­zi­ós fo­lya­ma­tok je­len­nek meg. Az elő­adás vé­gén pár sta­tisz­ti­kai prob­lé­ma is em­lí­tés­re ke­rül.

  • 2015. június 5., péntek, 10 óra
    Marco MarozziUniversita della Calabria, Olaszország
    Multivariate multidistance tests for high-dimensional low sample size case-control studies

    A class of mult­iva­ria­te tests for case-cont­rol stu­di­es with high di­men­si­o­nal low samp­le size data and with comp­lex de­pen­den­ce struc­tu­re, that are com­mon in me­di­cal imag­ing and mo­le­cu­lar bio­logy, is pre­sen­ted. The tests can be app­li­ed when the num­ber of va­ri­a­b­les is much lar­ger than the num­ber of sub­jects, and when the un­derly­ing po­pu­la­ti­on dis­t­ri­bu­tions are hea­vy-tai­led or ske­wed. As a mo­ti­vat­ing app­li­ca­ti­on, we cons­ider a ca­se­cont­rol study whe­re pha­se cont­rast ci­ne­ma­tic car­dio­vas­cu­lar mag­ne­tic re­so­nance imag­ing has been used to com­pa­re many car­dio­vas­cu­lar cha­rac­te­r­is­tics of yo­ung he­al­thy smok­ers and yo­ung he­al­thy non-smok­ers. The tests are bas­ed on the com­bi­na­ti­on of tests bas­ed on in­ter­point dis­tan­ces. It is the­o­re­ti­cally pro­ved that the tests are exact, un­bias­ed and con­sis­tent. It is shown that the tests are very po­wer­ful un­der nor­mal, hea­vy-tai­led and ske­wed dis­t­ri­bu­tions. The tests can be app­li­ed also to case-cont­rol stu­di­es with high-di­men­si­o­nal low samp­le size data from ot­her me­di­cal imag­ing tech­ni­ques (like com­pu­ted to­mo­gra­phy or X-ray ra­dio­gra­phy), che­mo­met­rics and mic­ro­ar­ray data (pro­teo­mics, transcrip­to­mics).

    [1] Ju­rec­ko­va, J, Ka­li­na, J. Non­pa­ra­met­ric mult­iva­ria­te rank tests and the­ir un­bias­ed­ness. Ber­no­ul­li (2012), 18:229–251. DOI: 10.3150/​10-BEJ326
    [2] Ma­roz­zi, M. Mult­iva­ria­te tri-as­pect non-pa­ra­met­ric test­ing. Jour­nal of Non­pa­ra­met­ric Sta­tis­tics (2007), 19:269–282. DOI: 10.1080/​10485250701768537
    [3] Ma­roz­zi, M. Mult­iva­ria­te tests bas­ed on in­ter­point dis­tan­ces with app­li­ca­ti­on to mag­ne­tic re­so­nance imag­ing. Sta­tis­ti­cal Met­hods in Me­di­cal Re­se­arch (2014), DOI: 10.1177/​0962280214529104
    [4] Ma­roz­zi, M. Mult­iva­ria­te mul­ti­dis­tance tests for high-di­men­si­o­nal low samp­le size case-cont­rol stu­di­es. Sta­tis­tics in Me­di­ci­ne (2015), DOI: 10.1002/​sim.6418

  • 2015. május 22., péntek, 10 óra
    Korándi DánielETH Zürich, Svájc
    Egy véletlen triadikus folyamat

    Le­gyen \(H = H(n, p)\) egy vé­let­len 3-uni­form hi­per­gráf (amely min­den csúcs­hár­mast a töb­bi­től füg­get­le­nül \(p\) va­ló­szí­nű­ség­gel tar­tal­maz), és néz­zük a kö­vet­ke­ző gráf­fo­lya­ma­tot \(H\) csúcs­hal­ma­zán: Kez­det­ben a \(G\) gráf egy csil­lag, azaz egy rög­zí­tett \(v_0\) csúccsal érint­ke­ző összes él­ből áll. Ezek után ha van olyan \(x, y, z\) csúcs­hár­mas \(H\)-ban, hogy \(xy\) és \(yz\) már éle \(G\)-nek, ak­kor \(xz\)-t is hoz­zá­ad­juk a gráf­hoz, majd ezt a lé­pést is­mé­tel­get­jük, amíg csak le­het­sé­ges. Azt mond­juk, hogy a fo­lya­mat pro­pa­gál, ha vé­gül el­ju­tunk a tel­jes grá­fig. Eb­ben az elő­adás­ban meg­mu­tat­juk, hogy a pro­pa­gá­lás kü­szöb­va­ló­szí­nű­sé­ge \(p = 1/2 \sqrt{n}\). A bi­zo­nyí­tás a dif­fe­ren­ci­ál­egyen­le­tes mód­sze­ren ala­pul. Az ered­mé­nyünk­ből az is kö­vet­ke­zik, hogy a vé­let­len két­di­men­zi­ós szimp­li­ci­á­lis komp­le­xus egy­sze­re­sen össze­füg­gő, ha a lap­va­ló­szí­nű­ség leg­alább \(1/2 \sqrt{n}\), ami meg­ja­vít­ja Bab­son, Hoff­man és Kah­le fel­ső becs­lé­sét a kü­szöb­va­ló­szí­nű­ség­re.

    Yu­val Pe­led­del és Benny Su­da­kov­val kö­zös mun­ka.

  • 2015. április 10., péntek, 10 óra
    Varga LászlóELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Küszöbmeghalóási modellek és a súlyozott bootstrap alkalmazása magyarországi csapadékadatok modellezésére

    Elő­adá­sunk cél­ja mind az egy-, mind a mos­ta­ná­ban be­ve­ze­tett két­di­men­zi­ós kü­szöb­meg­ha­la­dá­si mo­del­lek, va­la­mint a sú­lyo­zott li­ke­li­ho­od boot­strap egy le­het­sé­ges al­kal­ma­zá­sá­nak be­mu­ta­tá­sa, össze­ha­son­lí­tá­sa az ext­rém­ér­ték-elem­zés­ben már-már ha­gyo­má­nyos­nak mond­ha­tó pro­fi­le li­ke­li­ho­od­dal. Mód­sze­re­in­ket 63 éves ma­gyar­or­szá­gi napi csa­pa­dék­ada­tok se­gít­sé­gé­vel mu­tat­juk be.

  • 2015. január 23., péntek, 10 óra
    Komjáthy JúliaEindhoven University of Technology, Hollandia
    Legrövidebb utak fájának fokszámeloszlása és hálózat-mintavételezési algoritmusok torzítottsága

    Az elő­adás­ban kü­lön­bö­ző él­sú­lyo­zott vé­let­len gráf mo­del­lek egy csúcs­ból in­du­ló leg­rö­vi­debb utak fá­já­nak fok­szám­el­osz­lá­sát vizs­gál­juk. Sok em­pi­ri­kus ta­nul­mány cél­ja, hogy meg­ha­tá­roz­za egy nagy, is­me­ret­len struk­tú­rá­jú há­ló­zat fok­szám­el­osz­lá­sát az úgy­ne­ve­zett trace-ro­u­te min­ta­vé­te­le­zé­si el­já­rást hasz­nál­va. A ka­pott rész-há­ló­zat fok­szám­el­osz­lá­sá­ból sze­ret­nénk az ere­de­ti há­ló­zat fok­szám­el­osz­lá­sá­ra kö­vet­kez­tet­ni. Az aláb­bi há­ló­za­tok­ra ma­te­ma­ti­ka­i­lag pre­cí­zen meg­ha­tá­roz­zuk az egy csúcs­ból in­du­ló leg­rö­vi­debb utak fá­já­nak fok­szám­el­osz­lá­sát: tel­jes gráf és vé­let­len re­gu­lá­ris gráf, mind­ket­tő \(Exp(1)^s\) i.i.d. él­sú­lyok­kal el­lát­va, ahol \(s > 0\) és \(Exp(1)\) ex­po­nen­ci­á­lis el­osz­lá­sú 1 vár­ha­tó ér­ték­kel, il­let­ve a kon­fi­gu­rá­ci­ós mo­dell hat­vány­le­csen­gé­sű fok­szám­el­osz­lás­sal, és tet­sző­le­ges i.i.d. foly­to­nos el­osz­lá­sú él­sú­lyok­kal, ha a hat­vány­ki­te­vő \(\tau > 3\), il­let­ve \(2 < \tau < 3\) ese­tén olyan i.i.d. él­sú­lyok­kal, me­lyek rob­ba­nó el­ága­zó fo­lya­ma­tot pro­du­kál­nak a fok­szám­el­osz­lás hossz­tor­zí­tott el­osz­lá­sá­val együtt (az ex­po­nen­ci­á­lis el­osz­lás bár­mely po­zi­tív vagy ne­ga­tív hat­vá­nya pél­dá­ul ilyen). Eze­ket az ered­mé­nye­ket fel­hasz­nál­va meg­vizs­gál­juk azt a fi­zi­ku­sok és há­ló­zat­ku­ta­tók ál­tal vi­ta­tott je­len­sé­get, mi­sze­rint a trace-ro­u­te min­ta­vé­te­le­zés tor­zít­ja a fok­szám­el­osz­lást.

    Shan­kar Bha­mi­d­ivel, Jes­se Good­man­nal és Rem­co van der Hofs­tad­dal kö­zös cikk alap­ján.

  • 2014. december 12., péntek, 10 óra
    Pósfai MártonELTE TTK Komplex Rendszerek Fizikája Tanszék/Northeastern University, Boston
    Párosítás, magperkoláció és lineáris irányíthatóság

    A há­ló­za­tok vizs­gá­la­ta to­vább­ra is nagy len­dü­let­tel fej­lő­dő ága a komp­lex rend­sze­rek ku­ta­tá­sá­nak, egyik ak­tu­á­lis té­má­ja a há­ló­za­tok irá­nyít­ha­tó­sá­gá­nak kér­dé­se. A prob­lé­ma egyik le­het­sé­ges meg­kö­ze­lí­té­se a rend­sze­rek ún. struk­tu­rált rend­szer­ként tör­té­nő le­írá­sa, ami le­he­tő­vé te­szi, hogy pusz­tán a rend­szert le­író há­ló­zat szer­ke­ze­té­ből kö­vet­kez­tet­hes­sünk a tel­jes irá­nyít­ha­tó­ság­hoz szük­sé­ges kül­ső je­lek szá­má­ra. Mo­dell há­ló­za­tok ko­ráb­bi nu­me­ri­kus vizs­gá­la­ta so­rán meg­fi­gyel­ték, hogy a há­ló­za­tok bi­zo­nyos át­lag­sű­rű­sé­gé­nél a kont­roll­kon­fi­gu­rá­ci­ók ro­busz­tus­sá­ga drasz­ti­kus vál­to­zá­son megy át. Meg­mu­tat­juk, hogy ez az át­ala­ku­lás a mag­per­ko­lá­ci­ó­nak ne­ve­zett struk­tu­rá­lis fá­zis­át­ala­ku­lás kö­vet­kez­mé­nye. A fo­lya­ma­tot ana­li­ti­ku­san le­ír­juk kor­re­lá­lat­lan há­ló­za­tok ese­té­ben, meg­mu­tat­juk, hogy irá­nyí­tat­lan há­ló­za­tok ese­té­ben az át­ala­ku­lás má­sod­ren­dű, irá­nyí­tott eset­ben hib­rid.

  • 2014. november 28., péntek, 10 óra
    Mályusz MiklósELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Potts véletlen mezők alkalmazásai

    Elő­adá­som cél­ja né­hány tér­sta­tisz­ti­kai mo­dell be­mu­ta­tá­sa, me­lyek az ada­tok tér­be­li össze­füg­gé­sét rej­tett Potts vé­let­len me­zőn ke­resz­tül fog­ják meg. Az elő­adá­som­ban szó lesz egy­fe­lől a Potts-mo­dell né­hány ne­ve­ze­tes fel­hasz­ná­lá­sá­ról, más­fe­lől pe­dig be­szél­ni fo­gok sa­ját mun­kám­ról, me­lyet ma­gyar egész­ség­ügyi ada­to­kon vé­gez­tem kon­zu­len­sem­mel, Ara­tó Mik­lós­sal kö­zö­sen.

  • 2014. november 21., péntek, 10 óra
    Csikja RudolfBME TTK Matematikai Analízis Tanszék
    A béta-hiszterézis leképezés

    Rö­vi­den be­mu­ta­tom a hisz­te­ré­zis je­len­sé­gét, il­let­ve azt, hogy ez ho­gyan kap­cso­ló­dik a di­na­mi­kai rend­sze­rek­hez. Pél­da­ként a Ré­nyi-féle béta le­ké­pe­zés hisz­te­ré­zi­ses vál­to­za­tát fo­gom rész­le­te­sen be­mu­tat­ni. A vizs­gá­lat cél­ja in­va­ri­áns mér­ték (acim) konst­ru­lá­sa Mar­kov és ál­ta­lá­nos eset­ben is.

  • 2014. október 17., péntek, 10 óra 30 perc
    Sikolya KingaDebreceni Egyetem
    Ornstein-Uhlenbeck mező előrejelzésére vonatkozó optimális mintavételi terv meghatározása

    Érde­kes és szá­mos he­lyen al­kal­maz­ha­tó prob­lé­ma kü­lön­bö­ző kri­té­ri­u­mok sze­rin­ti op­ti­má­lis min­ta­vé­te­li el­he­lye­zé­sek meg­ha­tá­ro­zá­sa bi­zo­nyos mo­del­lek ese­tén. Orns­tein–Uh­len­beck-mező ese­tén vizs­gál­tuk a pa­ra­mé­ter­becs­lés sze­rin­ti op­ti­má­lis min­ta­vé­telt a min­ta­pon­tok két spe­ci­á­lis el­ren­de­zé­sét te kint­ve. To­váb­bá Orns­tein–Uh­len­beck-mező ese­tén si­ke­rült ered­mé­nye­ket el­ér­ni az op­ti­má­lis elő­re­jel­zés té­ma­kö­ré­ben is. A ka­pott el­mé­le­ti ered­mé­nye­ket nu­me­ri­kus szá­mí­tá­sok­kal tá­masz­tot­tuk alá.

    Az ered­mé­nyek Ba­ran Sán­dor­ral és Mi­lan Steh­lík­kel kö­zö­sek.

  • 2014. szeptember 26., péntek, 10 óra
    Elek PéterELTE Társadalomtudományi Kar
    A földrajzi hozzáférés hatása a járóbeteg-ellátás igénybevételére: becslési eredmények és ökonometriai vonatkozások

    2010 és 2012 kö­zött húsz ma­gyar­or­szá­gi kis­tér­ség­ben ala­kí­tot­tak ki eu­ró­pai uni­ós tá­mo­ga­tás­sal já­ró­be­teg-szak­ren­de­lést, és ez­zel több száz­ezer em­ber­hez ke­rült lé­nye­ge­sen kö­ze­lebb a szak­am­bu­lan­cia. Ezt a ter­mé­sze­tes kí­sér­le­tet hasz­nál­juk ki an­nak becs­lé­sé­re, hogy a föld­raj­zi hoz­zá­fé­rés mi­ként be­fo­lyá­sol­ja a já­ró­be­teg-el­lá­tás igény­be­vé­te­lét. Pro­pen­sity sco­re ala­pú pá­ro­sí­tá­sos mód­szer­rel, va­la­mint fix ha­tá­sú (fi­xed ef­fect, FE) li­ne­á­ris pa­nel­reg­resszi­ós és fix ha­tá­sú Po­is­son-reg­resszi­ós becs­lés­sel is azt kap­juk, hogy a fej­lesz­té­sek ered­mé­nye­ként – más té­nye­zők kont­rol­lá­lá­sa után – 24-28 szá­za­lék­kal emel­ke­dett az eset­szám. A gép­ko­csis uta­zá­si idő egy per­ces csök­ke­né­se pél­dá­ul a bel­gyó­gyá­szat­ban 0,8 szá­za­lék­kal, a re­u­ma­to­ló­gi­á­ban 2,8 szá­za­lék­kal eme­li az eset­szá­mot. Több szak­má­ban az új ka­pa­ci­tá­sok nagy­sá­gá­nak kü­lön ha­tá­sa van az eset­szám­ra, ami a szol­gál­ta­tók ál­tal ger­jesz­tett ke­res­let­re (supp­li­er­in­du­ced de­mand) utal. A tel­jes eset­szám-vál­to­zást fix ha­tá­sú lo­git és fix ha­tá­sú cson­kolt Po­is­son­mo­dell al­kal­ma­zá­sá­val fel­bont­juk az or­vos­hoz for­du­lá­si va­ló­szí­nű­ség, il­let­ve az or­vos­hoz for­du­lá­si gya­ko­ri­ság vál­to­zá­sá­ra, és azt kap­juk, hogy a leg­több szak­má­ban az előb­bi ha­tás a je­len­tő­sebb. Vé­ge­ze­tül Mon­te Car­lo szi­mu­lá­ci­ó­val vizs­gál­juk a fix ha­tá­sú cson­kolt Po­is­son-becs­lő­függ­vény ro­busz­tus­sá­gát az el­osz­lá­si fel­te­vé­sek sé­rü­lé­sé­re. Ez a kér­dés azért ér­de­kes, mert míg a fix ha­tá­sú Po­is­son-becs­lés köz­tu­dot­tan igen ro­busz­tus a mö­göt­te levő mo­dell­fel­té­te­lek sé­rü­lé­sé­re (Wo­old­ridge, 1999), a fix ha­tá­sú cson­kolt Po­is­son-becs­lés ha­son­ló tu­laj­don­sá­ga­it el­mé­le­ti vagy szi­mu­lá­ci­ós esz­kö­zök­kel ed­dig még nem vizs­gál­ták.

    Vá­ra­di Ba­lázzsal és Var­ga Már­ton­nal kö­zös mun­ka.

  • 2014. június 20., péntek, 10 óra
    Bárdossy AndrásUniversitat Stuttgart, Németország
    A valószínűségszámítás és a matematikai statisztika szerepe a hidrológiában

    A hid­ro­ló­gi­á­ban ter­mé­sze­ti idő­so­rok tu­laj­don­sá­ga­i­nak és vál­to­zók tér­be­li el­osz­lá­sá­nak is­me­re­te alap­ve­tő fon­tos­sá­gú. Az elő­adás so­rán né­hány spe­ci­á­lis tu­laj­don­ság­ról és azok oka­i­ról és kö­vet­kez­mé­nye­i­ről lesz szó.

  • 2014. május 16.
    Rásonyi MiklósMTA Rényi Intézet
    Piaci szereplők viselkedése és optimális befektetéseik

    Da­ni­el Ber­no­ul­li óta szo­ká­sos fel­té­te­lez­ni, hogy a be­fek­te­tők hasz­nos­sá­gi függ­vé­nyük vár­ha­tó ér­té­két pró­bál­ják ma­xi­ma­li­zál­ni. Erre axi­o­ma­ti­kus el­mé­le­tet épí­tett fel Neu­mann Já­nos és Os­kar Mor­gens­tern. A köz­gaz­da­ság­tan so­kat hasz­nál­ja ezt az el­mé­le­tet, és ál­ta­lá­ban azt is fel­té­te­le­zik, hogy a be­fek­te­tők koc­ká­zat­ke­rü­lők (ami ma­te­ma­ti­ka­i­lag a hasz­nos­sá­gi függ­vény kon­ka­vi­tá­sá­nak fe­lel meg). Da­ni­el Kah­ne­man és Amos Tversky kí­sér­le­tek alap­ján ál­lí­tot­ta, hogy a tény­le­ges be­fek­te­tők más­kép­pen vi­sel­ked­nek: hasz­nos­sá­gi függ­vé­nyük a ne­ga­tív tar­to­má­nyon kon­vex, a po­zi­tí­von kon­káv, emel­lett el­tor­zít­ják a tény­le­ges va­ló­szí­nű­sé­ge­ket, ezért vár­ha­tó ér­ték he­lyett nem li­ne­á­ris Cho­qu­et-in­teg­rá­lo­kat kell te­kin­te­ni. Ezek ma­xi­ma­li­zá­lá­sá­hoz az is­mert mód­sze­rek ke­vés tám­pon­tot nyúj­ta­nak. Eb­ben az elő­adás­ban be­mu­ta­tok né­hány, e prob­lé­má­val kap­cso­la­tos ered­ményt.

  • 2014. március 21.
    Szabó IstvánELTE TTK Valószínűségelméleti és Statisztika Tanszék
    A kriptográfia és a matematika kapcsolata

    A krip­tog­rá­fi­ai (tit­kos­írá­si) al­go­rit­mu­sok biz­ton­sá­gá­nak elem­zé­se na­gyon sok ma­te­ma­ti­kai te­rü­let ered­mé­nye­it hasz­nál­ja fel (pl. sta­tisz­ti­ka, in­for­má­ció­el­mé­let, szám­el­mé­let, al­geb­ra, al­go­rit­mus­el­mé­let, bo­nyo­lult­ság­el­mé­let, vé­ges geo­met­ria), de a ha­tás köl­csö­nös, a krip­tog­rá­fia ál­tal fel­ve­tett prob­lé­mák több te­rü­le­ten je­len­tős ma­te­ma­ti­kai ku­ta­tá­so­kat, ered­mé­nye­ket in­du­kál­tak. Rö­vid át­te­kin­tést adok a gya­kor­la­ti al­kal­ma­zá­sok ál­tal ins­pi­rált né­hány ki­emelt ku­ta­tá­si te­rü­let­ről, el­ső­sor­ban a szám­el­mé­le­ti ala­pú RSA tit­ko­sí­tó al­go­rit­mus, va­la­mint a di­gi­tá­lis alá­írá­sok biz­ton­sá­gá­ról. Az elő­adás­ban sze­re­pel jó né­hány ma­te­ma­ti­ka­i­lag is ér­de­kes, egé­szen meg­le­pő kö­vet­kez­te­tés is.

  • 2014. március 14., péntek, 10 óra
    Tóth BálintBME/University of Bristol, Anglia
    Két út a szuperdiffuzivitáshoz (II. rész)

  • 2014. március 7., péntek, 10 óra
    Tóth BálintBME/University of Bristol, Anglia
    Két út a szuperdiffuzivitáshoz

    Hosszú me­mó­ri­á­val ren­del­ke­ző moz­gá­sok ese­té­ben ter­mé­sze­tes mó­don for­dul­hat elő, hogy nor­má­lis (idő négy­zet­gyö­ké­vel ará­nyos) nagy­ság­rend mel­lett mul­tip­li­ka­tív log-hat­vány nagy­ság­ren­dű szor­zó fak­tor­ral kell a ská­lá­zást kor­ri­gál­ni. En­nek a je­len­ség­nek mély va­ló­szí­nű­ség­szá­mí­tá­si és fi­zi­kai okai le­het­nek. A je­len­ség két kü­lön­bö­ző for­ga­tó­köny­vét fo­gom be­mu­tat­ni két re­le­váns pél­dán.
    (1) Két di­men­zi­ó­ban, hosszú me­mó­ri­á­jú ön­ta­szí­tó és vé­let­len kö­zeg­ben zaj­ló dif­fú­zi­ók egy csa­lád­já­ban mu­ta­tok szu­per­dif­fú­zív kor­lá­to­kat. (Val­kó Be­ne­dek­kel (Ma­di­son WI) kö­zös mun­ka)
    (2) A pe­ri­o­di­kus Lo­rentz-gáz ún. Boltz­mann-Grad ha­tár­át­me­ne­té­ben (nagy sű­rű­ség és kis üt­kö­zők oly mó­don, hogy a ti­pi­kus sza­bad út­hossz 1 nagy­ság­ren­dű ma­rad) mu­ta­tok cent­rá­lis ha­tár­el­osz­lás-té­telt, mul­tip­li­ka­tív log-kor­rek­ci­ó­val.
    Ez az ered­mény min­den di­men­zi­ó­ban áll. (Jens Mar­klof-fal (Bris­tol) kö­zös mun­ka, mely kap­cso­ló­dik Szász Do­mo­kos és Var­jú Ta­más ko­ráb­bi ered­mé­nye­i­hez.)

  • 2014. január 24., 10 óra
    Berkes IstvánGraz University of Technology, Ausztria
    Gyenge és erős függőség az analízisben

    Az elő­adás­ban né­hány, az ana­lí­zis­ben fon­tos sze­re­pet ját­szó függ­vény­so­ro­zat (az \(\{nx\}\) so­ro­zat, lánc­tört­ki­fej­tés­sel kap­cso­la­tos so­ro­za­tok és hé­za­gos so­rok) va­ló­szí­nű­ség­szá­mí­tá­si struk­tú­rá­ját vizs­gál­juk és bi­zo­nyí­tunk ezek­re új ered­mé­nye­ket.

  • 2013. december 6., 10 óra
    Timár ÁdámSzegedi Tudományegyetem Bolyai Intézet
    Átlagolt versus majdnem biztos invarianciaelvek véletlen konduktanciamodellekben

    Meg­mu­tat­juk, hogy lé­te­zik olyan er­go­di­kus vé­let­len kon­duk­tan­cia- kör­nye­zet a koc­ka­rá­cson, ami­nél a foly­to­nos ide­jű vé­let­len bo­lyon­gás tel­je­sí­ti a gyen­ge vagy a´tla­golt in­va­ri­an­cia­el­ve­ket, de nem tel­je­siti a majd­nem biz­tos in­va­ri­an­cia­el­vet. Az ered­mé­nyek kö­zö­sek M. Bar­low-val és K. Burdzy-val.

  • 2013. november 22., 10 óra
    Nedényi FanniSzegedi Tudományegyetem Bolyai Intézet
    Szekvenciális változásészlelés többtípusos Galton--Watson-modellekben

    Elő­adá­som­ban sta­tisz­ti­kai el­já­rá­so­kat mu­ta­tok több­tí­pu­sos Gal­ton–Wat­son mo­del­lek meg­vál­to­zá­sá­nak ész­le­lé­sé­re. Az al­kal­maz­ha­tó­ság ér­de­ké­ben ezen el­já­rá­sok szek­ven­ci­á­li­sak, így a mo­dell meg­vál­to­zá­sá­ra azon­nal re­a­gál­ha­tunk. A szek­ven­ci­á­lis el­já­rá­so­kat az iro­da­lom­ban vég­te­len idő­ho­ri­zon­ton szok­ták te­kin­te­ni, kor­lát­lan szá­mú meg­fi­gye­lés mel­lett. Azon­ban a gya­kor­lat­ban sok­szor kor­lá­to­zott a meg­fi­gye­lé­sek szá­ma, így vég­te­len és vé­ges idő­ho­ri­zon­ton al­kal­maz­ha­tó pró­bát is de­fi­ni­á­lok, va­la­mint ezen pró­bák tu­laj­don­sá­ga­it vizs­gá­lom.

  • 2013. november 15., 10 óra
    Bartosz StawiarskiCracow University of Technology, Faculty of Physics, Mathematics and Computer Sciences, Krakkó, Lengyelország
    Detecting structural breaks in financial volatility within GARCH-type framework

    Struc­tu­ral bre­aks (ab­rupt changes) in vo­la­ti­lity of fi­nan­cial time se­ri­es can substan­ti­ally de­form an un­derly­ing, “sta­tic” mo­del emp­loyed for em­pi­ri­cal re­se­arch. This trans­la­tes into po­orer sta­tis­ti­cal in­fe­ren­ce and ne­ga­ti­vely af­fects the app­li­ca­ti­o­nal as­pects of time se­ri­es analy­sis. The­re­fo­re, pro­vi­ding re­li­ab­le to­ols for de­tec­ting such vo­la­ti­lity “chan­ge points” is chal­leng­ing and very re­le­vant task, gre­atly inf­lu­enc­ing the mo­deling and fo­re­casting meth­do­logy. Fo­cus­ing ma­inly upon the GARCH-type mo­deling fra­me­work, we will recall the ce­le­b­ra­ted ICSS al­go­rithm pro­po­s­ed by Inc­lan and Tiao (1994), next we will show its furt­her amend­ments by San­só et al. (2004) and non­pa­ra­met­ric al­ter­na­tive app­ro­ach known as NPCPM mo­del in Ross (2012). Ac­count­ing for struc­tu­ral bre­aks le­ads to cons­ide­rab­le re­duc­ti­on of vo­la­ti­lity pers­is­ten­ce in the mo­dels used by va­ri­o­us re­se­ar­chers in fi­nan­cial eco­no­met­rics, which is shown in papers of e.g. Co­var­ru­bi­as et al. (2006), Kang et al. (2009). Ra­pidly gro­wing le­ver­age of fi­nan­cial mar­kets, to­get­her with un­pre­ce­den­ted mul­ti-tril­li­on mo­ne­tary ex­pe­ri­ments (sin­ce 2008) pave the way for yet more tur­bu­lent re­gime swit­ches in fi­nan­cial vo­la­ti­lity in not-too-dis­tant fu­tu­re, which ma­kes the struc­tu­ral break de­tec­ti­on still more vital and cru­ci­al both in un­der­stand­ing as­set re­turns dy­na­mics and more ef­fi­ci­ent risk ma­nag­ement.

  • 2013. november 8., 10 óra
    Mánfay Máté
    Lévy-folyamatokkal hajtott véges dimenziós lineáris rendszerek identifikációja

    Lévy-fo­lya­ma­tok­kal való mo­del­le­zés gya­ko­ri a pénz­ügyi ma­te­ma­ti­ká­ban, te­le­kom­mu­ni­ká­ci­ó­ban, köz­gaz­da­ság­tan­ban és a ter­mé­szet­tu­do­má­nyok­ban. Az elő­adá­son Lévy-fo­lya­ma­tok nö­vek­mé­nye­i­vel meg­haj­tott vé­ges di­men­zi­ós li­ne­á­ris rend­sze­rek iden­ti­fi­ká­ci­ó­ját tár­gyal­juk. Cé­lunk mind a rend­szer, mind a meg­haj­tó fo­lya­mat pa­ra­mé­te­re­i­nek becs­lé­se. A prob­lé­ma ér­de­kes­sé­ge ab­ban rej­lik, hogy a meg­haj­tó zaj nem a sű­rű­ség­függ­vé­nyé­vel, ha­nem a ka­rak­te­risz­ti­kus függ­vé­nyé­vel van meg­ad­va. A ma­xi­mum li­ke­li­ho­od mód­szer al­ter­na­tí­vá­ja­ként az em­pi­ri­kus ka­rak­te­risz­ti­kus függ­vény mód­szer li­ne­á­ris rend­sze­rek­re való adap­tá­lá­sá­val dol­goz­zuk ki a pa­ra­mé­te­rek becs­lé­sét.

  • 2013. október 25., 10 óra
    Kornyik MiklósELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Véletlen mátrixok

    A vé­let­len mát­ri­xok­kal Wig­ner Jenő és John Wis­hart kezd­tek el be­ha­tób­ban fog­lal­koz­ni a 20. szá­zad első fe­lé­ben. Wis­hart sta­tisz­ti­kai ol­dal­ról kö­ze­lí­tet­te meg a té­ma­kört, nor­má­lis el­osz­lá­sú min­ták­ból gyár­tott ko­va­ri­an­cia mát­rix becs­lé­sé­nek el­osz­lá­sát, szá­mol­ta ki 1928-ban. Wig­ner a mag­fi­zi­ká­ban al­kal­maz­ta a vé­let­len mát­ri­xo­kat ne­héz­ato­mok spekt­ru­má­nak becs­lé­se­kor. 1955-ben tet­te köz­zé az ún. fél­kör sza­bály té­te­lét, mely a ta­pasz­ta­la­ti sa­ját­ér­ték­el­osz­lás kon­ver­gen­ci­á­já­ról és an­nak ha­tár­el­osz­lá­sá­ról szól. Az elő­adás so­rán is­mer­tet­ni fo­gom a kü­lön­bö­ző vé­let­len mát­rix osz­tá­lyo­kat és azok jel­lem­ző­it, majd em­lí­tést te­szek a té­má­ban el­ért je­len­tő­sebb ered­mé­nyek­ről, me­lyek a ta­pasz­ta­la­ti sa­ját­ér­ték-el­osz­lá­sok ha­tár­el­osz­lá­sá­ról, a ma­xi­má­lis sa­ját­ér­ték aszimp­to­ti­ká­já­ról és a szom­szé­dos sa­ját­ér­té­kek kö­zöt­ti tá­vol­sá­gok el­osz­lá­sá­ról szól­nak. A fen­ti ered­mé­nyek mind füg­get­len ele­mű mát­ri­xok ese­té­ben áll­nak fent. Szó lesz még ar­ról, hogy mit le­het mon­da­ni ab­ban az eset­ben, ha gyen­gí­tünk a füg­get­len­sé­gen.

  • 2013. október 4., péntek, 10 óra 30 perc
    Johannes Mühle-Karbe
    Optimal liquidity provision in limit-order markets

    In to­day’s el­ectro­nic mar­kets, in­ves­tors can cho­o­se to trade by eit­her mar­ket or li­mit or­ders. Mar­ket or­ders gu­a­ran­tee im­me­dia­te exe­cu­ti­on, but in­ves­tors have to pay the bid-ask spre­ad for tak­ing li­qu­i­dity out of the or­der book in this way. In cont­rast, li­mit or­ders al­low to earn the spre­ad by pro­vi­ding li­qu­i­dity, but a pos­ted or­der is only exe­cu­ted when a su­i­tab­le coun­ter­par­ty ar­ri­ves. We study the re­sult­ing tra­deoff bet­ween pro­fits from li­qu­i­dity provi­si­on and in­ven­to­ry risk in a ge­ne­ral sett­ing, al­lo­wing for ar­bit­rary pre­fe­ren­ces, as­set pri­ce and cost dy­na­mics, and ar­ri­val ra­tes. In the li­mit for small spre­ads, the cor­res­pond­ing non-Mark­o­vi­an sin­gu­lar cont­rol prob­lem can be sol­ved in clos­ed form, lead­ing to exp­li­cit for­mu­las for the op­ti­mal po­li­cy and wel­fa­re. (Jo­int work with Ch­ri­stoph Kühn)

  • 2013. június 7., 10 óra
    Ráth BalázsUniversity of British Columbia, Vancouver, Kanada
    Korrelált perkolációs modellek geometriájáról

    Le­gyen \(S\) a \(d\) di­men­zi­ós első-szom­széd rács (\(\mathbb{Z}^d\) ) egy vé­let­len rész­hal­ma­za. Mit kell fel­ten­nünk \(S\) el­osz­lá­sá­ról ah­hoz, hogy az \(S\) ál­tal fe­szí­tett rész­gráf egyet­len vég­te­len kom­po­nen­sé­nek geo­met­ri­á­ja ha­son­ló le­gyen a \(d\) di­men­zi­ós rá­csé­hoz? Elő­adá­som­ban fel­vá­zo­lok egy olyan ‘’a­xi­ó­ma­rend­szert’’, amit ha \(S\) el­osz­lá­sa ki­elé­gít, ak­kor lé­te­zik egy olyan nor­ma a \(d\) di­men­zós té­ren, hogy \(S\) vég­te­len kom­po­nen­sé­nek tá­vo­li pont­ja­i­nak \(S\)-beli tá­vol­sá­ga jól kö­ze­lít­he­tő a nor­ma sze­rin­ti tá­vol­sá­guk­kal. Az axi­ó­ma­rend­szert nem csak a so­kat vizs­gált Ber­no­ul­li per­ko­lá­ci­ós mo­dell elé­gí­ti ki, ha­nem bi­zo­nyos eg­zo­ti­ku­sabb mo­del­lek is, ame­lyek­ben a kor­re­lá­ci­ók las­sú le­csen­gé­sű­ek.

    Két ilyen mo­dellt is is­mer­te­tek az elő­adá­som­ban: az egyik­ben \(S\) sze­re­pét a ‘’vé­let­len gu­banc’’ (ran­dom in­ter­lace­ments) komp­le­men­te­re játssza, a má­sik mo­dell­ben \(S\) a zéró tö­me­gű sza­bad Gauss-mező (mass­less Gaus­si­an free field) szint­hal­ma­za.

    Az elő­adás alap­já­ul szol­gá­ló cikk: Ale­xan­der Dre­witz, Ba­lázs Ráth, Ar­tem Sa­pozh­ni­kov: On che­mi­cal dis­tan­ces and shape the­or­ems in per­cola­ti­on mo­dels with long-range cor­re­la­tions (2012, bí­rá­lás alatt). ’

  • 2013. május 10., 11 óra
    Körmendi KristófSzegedi Tudományegyetem, Bolyai Intézet
    Paraméterbecslés többtípusos Galton-Watson-folyamatokban

    Az elő­adá­son a két­tí­pu­sos Gal­ton-Wat­son fo­lya­mat utód­el­osz­lá­sá­nak vár­ha­tó ér­ték mát­ri­xát be­csül­jük a kri­ti­kus, dup­lán szim­met­ri­kus eset­ben, majd meg vizs­gál­juk ezen becs­lé­sek aszimp­to­ti­kus tu­laj­don­sá­ga­it.

  • 2013. május 10., 10 óra
    T. Szabó TamásSzegedi Tudományegyetem, Bolyai Intézet
    Változásészlelés bizonyos diszkrét és folytonos idejű elágazó folyamatokra

    Az elő­adá­son az egész­ér­té­kű au­to­reg­resszi­ós fo­lya­ma­tok­ra ki­dol­go­zott vál­to­zás­ész­le­lé­si tech­ni­ká­kat és bi­zo­nyí­tá­si mód­sze­re­ket al­kal­maz­zuk, hogy ha­son­ló ered­mé­nye­ket ér­jünk el a Cox–In­gers­oll–Ross-fo­lya­mat­ra és egy Hest­on-tí­pu­sú mo­dell­re az er­go­di­kus eset­ben.

  • 2013. május 3., 10 óra
    Fegyverneki TamásELTE TTK Valószínűségelméleti és Statisztika Tanszék

  • 2013. március 22., 10 óra
    Kói TamásBME TTK Sztochasztika Tanszék
    Capacity regions of partly asynchronous multiple access channels

    Mul­tip­le ac­cess chan­nels (MACs) descri­be the si­tu­a­ti­on when many sen­ders send mes­sa­ges to one re­ce­i­ver si­mul­ta­ne­o­usly. MACs are most fre­qu­ently stu­di­ed un­der the as­sumpt­ion that the sen­ders can­not com­mu­ni­ca­te with each ot­her but are able to ma­in­ta­in frame synch­ron­ism. An asynch­ro­no­us MAC (AMAC) ari­ses when this as­sumpt­ion fa­ils, ca­us­ing unk­nown de­lays bet­ween the start­ing times of the co­de­words of the dif­fe­rent sen­ders. Here a sing­le let­ter cha­rac­teri­za­ti­on is gi­ven for the ca­pa­ci­ty re­gi­on of disc­re­te me­mory­less partly asynch­ro­no­us mul­tip­le ac­cess chan­nels (PA­MACs). The­se are AMACs with the sen­ders di­vi­ded into gro­ups, the sen­ders be­long­ing to the same gro­up are synch­ro­ni­zed but the gro­ups are not synch­ro­ni­zed with each ot­her. The talk is bas­ed on jo­int work with Ló­ránt Far­kas.

  • 2012. december 7., 10 óra
    Virág BálintUniversity of Toronto, Kanada
    Véletlen mátrixok és differenciáloperátorok

    Ho­gyan ért­sünk meg egy ma­gas di­men­zi­ós vé­let­len mát­ri­xot? Az egyik le­he­tő­ség az, hogy úgy gon­do­lunk rá, mint egy vé­let­len dif­fe­ren­cia-ope­rá­tor­ra. Ahogy a di­men­zió vég­te­len­hez tart, egy dif­fe­ren­ci­ál­ope­rá­tort ka­punk. Az ope­rá­tor struk­tú­rá­já­ból so­kat meg­tud­ha­tunk a nagy mát­ri­xok­ról is. Ez a meg­kö­ze­lí­tés se­gí­tett Dy­son egy régi prob­lé­má­já­nak meg­ol­dá­sá­ban. Hasz­nos volt ah­hoz is, hogy konst­ru­ál­junk egy olyan vé­let­len ope­rá­tort, amely­nek a sa­ját­ér­té­kei a sej­té­sek sze­rint a Ri­emann zeta függ­vény null­he­lye­i­nek el­osz­lás­be­li li­me­szei.

  • 2012. november 9., 10 óra
    Weisz FerencELTE IK Numerikus Analízis Tanszék
    Martingálelmélet a Fourier-analízisben

    A mart­in­gá­l­el­mé­le­tet, il­let­ve a mart­in­gál Hardy-te­rek el­mé­le­tét al­kal­ma­zom a Wal­sh–Fo­u­ri­er-ana­lí­zis­ben. En­nek se­gít­sé­gé­vel az egy– és több­vál­to­zós Wal­sh–Fo­u­ri­er-so­rok kon­ver­gen­ci­á­ját, il­let­ve összeg­zé­se­it vizs­gá­lom. Elő­ször az egy­pa­ra­mé­te­rű mart­in­gá­lok­kal, il­let­ve az egy­vál­to­zós Wal­sh–Fo­u­ri­er-so­rok­kal fog­lal­ko­zom, utá­na a több­pa­ra­mé­te­rű mart­in­gá­lok­kal és több­vál­to­zós so­rok­kal. Be­ve­ze­tek kü­lön­bö­ző mart­in­gál Hardy-te­re­ket, is­mer­te­tem ezek ato­mos fel­bon­tá­sát. Ezek se­gít­sé­gé­vel iga­zo­lom, hogy a Wal­sh–Fo­u­ri­er-so­rok kö­ze­pe­i­nek ma­xi­mál­ope­rá­to­ra kor­lá­tos a \(H_p\) Hardy-tér­ből az \(L_p\)-tér­be. In­nen in­ter­po­lá­ci­ó­val adó­dik, hogy a ma­xi­mál­ope­rá­tor gyen­gén \((1, 1)\)-tí­pu­sú, ami a majd­nem min­de­nütt való kon­ver­gen­ci­át biz­to­sít­ja.

  • 2012. október 5., 10 óra
    Pete GáborBME TTK Sztochasztika Tanszék, Budapest
    Local time on the exceptional set of dynamical percolation, and the Incipient Infinite Cluster

    In cri­ti­cal planar per­cola­ti­on, the­re are al­most su­rely no in­fi­ni­te clus­ters. Howe­ver, if the con­fi­gu­ra­ti­on evol­ves ac­cord­ing to a con­ti­nu­o­us time Mar­kov cha­in, the­re could be ran­dom ex­cept­io­nal times when the ori­gin is con­nec­ted to in­fi­nity. A the­or­em of Ch­ri­stop­he Gar­ban, Oded Sch­ramm and myself from 2008 is that such ex­cept­io­nal times do exist, and (for site per­cola­ti­on on the tri­an­gu­lar lat­ti­ce) the­ir Ha­us­dorff di­men­si­on is 31/​36.

    How does the clus­ter of the ori­gin look like at ex­cept­io­nal times? In jo­int work with Alan Ham­mond and Oded Sch­ramm, we de­fi­ne a no­ti­on of a ty­pi­cal ex­cept­io­nal time, and we show that, at such a time, the law of the in­fi­ni­te clus­ter is Kes­ten’s In­ci­pi­ent In­fi­ni­te Clus­ter. On the ot­her hand, the clus­ter of the ori­gin at the very first ex­cept­io­nal time lo­oks dif­fe­rent.

  • 2012. szeptember 28., 10 óra
    Rudas AnnaBME TTK Sztochasztika Tanszék, Budapest
    Entropy and Hausdorff dimension in random growing trees

    We in­vestiga­te the li­mit­ing be­ha­vi­o­ur of ran­dom tree growth in pre­fe­ren­ti­al at­tach­ment mo­dels. The tree stems from a root, and we add ver­ti­ces to the sys­tem one-by-one at ran­dom, ac­cord­ing to a rule which de­pends on the deg­ree dis­t­ri­bu­ti­on of the al­re­ady exist­ing tree. The so-called weight func­ti­on, in terms of which the rule of at­tach­ment is for­mu­la­ted, is such that each ver­tex in the tree can have at most \(K\) child­ren. We de­fi­ne the con­cept of a cert­ain ran­dom me­a­sure \(\mu\) on the leaves of the li­mit­ing tree, which cap­tu­res a glo­bal property of the tree growth in a na­tu­ral way. We pro­ve that the Ha­us­dorff and the pac­king di­men­si­on of this li­mit­ing me­a­sure is equ­al and cons­tant with pro­ba­bi­lity one. Mo­re­o­ver, the lo­cal di­men­si­on of \(\mu\) equ­als the Ha­us­dorff di­men­si­on at \(\mu\)–al­most every point. We give an exp­li­cit for­mu­la for the di­men­si­on, gi­ven the rule of at­tach­ment.

    The talk is bas­ed on jo­int work with Imre Pé­ter Tóth.

  • 2012. szeptember 21., 11 óra, D 0-820
    Szegedy BalázsUniversity of Toronto, Kanada
    On Sidorenko's conjecture

    The Er­dős-Si­mon­ovits-Si­dor­en­ko con­jec­tu­re is well-known in com­bi­na­to­rics but it has equ­i­va­lent for­mu­la­tions in analy­sis and pro­ba­bi­lity the­ory. The shor­test for­mu­la­ti­on is an in­teg­ral ine­qu­a­lity re­la­ted to Mayer in­teg­rals in sta­tis­ti­cal me­cha­nics and Feyn­man in­teg­rals in qu­an­tum field the­ory. We pre­sent new prog­ress in the area us­ing co­up­lings of pro­ba­bi­lity spa­ces and ent­ropy cal­cu­la­tions. Part of the talk is bas­ed on jo­int re­sults with J.L. Xi­ang Li.

  • 2012. június 1., 10 óra
    Lakatos LászlóELTE Informatikai Kar
    Ciklikus várakozási rendszerek

    Olyan egy­csa­tor­nás ki­szol­gá­lá­si rend­szert vizs­gá­lunk, amely­ben az igé­nyek ki­szol­gá­lá­sa a be­lé­pés idő­pont­já­ban (sza­bad rend­szer ese­tén) vagy et­től egy adott \(T\) cik­lus­idő több­szö­rö­se­i­vel kü­lön­bö­ző idő­pont­ban (fog­lalt ki­szol­gá­ló esz­köz vagy vá­ra­ko­zá­si sor ese­tén) kez­dőd­het el. A be­lé­pő igény­fo­lya­mat Po­is­son, a ki­szol­gá­lá­si idő ex­po­nen­ci­á­lis el­osz­lá­sú va­ló­szí­nű­sé­gi vál­to­zó. A rend­szer mű­kö­dé­sé­nek le­írá­sá­ra a be­ágya­zott Mar­kov-lánc tech­ni­kát hasz­nál­juk. Meg­ha­tá­roz­zuk a sta­bi­li­tás fel­té­te­lét, a je­len­lé­vő igé­nyek szá­ma és a vá­ra­ko­zá­si idő egyen­sú­lyi el­osz­lá­sát. A mo­dell re­pü­lő­gé­pek le­szál­lá­sá­nak fo­lya­ma­tát, ill. op­ti­kai je­lek to­váb­bí­tá­sát írja le.

  • 2012. május 25., 10 óra
    Dhanagopalan VenkatesanAnnamalai, Tamilnadu, India
    New Family of Time Series Models and Bayesian Inference

    In data analy­sis, the sta­ti­on­ary mo­dels play a ma­jor role in time se­ri­es mo­deling. Be­ca­u­se many time se­ri­es oc­cur­r­ing in prac­ti­ce have sta­ti­on­ary cha­rac­te­r­is­tics. Such mo­dels are wi­dely used in sci­en­ti­fic in­vestiga­tions. But the de­ter­mi­na­ti­on of an app­rop­ria­te ARMA\((p, q)\) mo­del to rep­re­sent an ob­ser­ved sta­ti­on­ary time se­ri­es in­vol­ves a num­ber of in­ter-re­la­ted prob­lems. The­se inc­lu­de the cho­i­ce of \(p\) and \(q\) (or­der de­ter­mi­na­ti­on), and est­ima­ti­on of the re­main­ing pa­ra­me­ters, viz., the mean, the co-ef­fi­ci­ent and the white no­i­se va­ri­ance \(s^2\). The to­pic of or­der de­ter­mi­na­ti­on and est­ima­ti­on of pa­ra­me­ters has att­rac­ted cons­ide­rab­le at­tent­ion in the time se­ri­es li­te­ra­tu­re. Va­ri­o­us met­hods have been pro­po­s­ed and exp­lor­ed, but still many prac­tit­io­n­ers ge­ne­rally fol­low the Box-Jen­kins app­ro­ach to time se­ri­es mo­deling. De­ter­mi­ning the app­rop­ria­te or­der of a pro­cess by mak­ing in­fe­ren­ce from the samp­le data is fa­irly dif­fi­cult. Also the est­ima­tes are to be eva­lu­a­ted ite­ra­ti­vely and the est­ima­tes may not be uni­que. A few wor­kers have also at­tac­ked this prob­lem us­ing the Ba­ye­si­an met­ho­do­logy. The so­lu­ti­on pro­po­s­ed by the­se wor­kers also suf­fers from the same type of draw­backs. A new fa­mily of time se­ri­es mo­dels, called the Full Range Au­to­reg­r­es­sive mo­del, is int­ro­du­ced which avo­ids the dif­fi­cult prob­lem of or­der de­ter­mi­na­ti­on in time se­ri­es analy­sis. Some of the ba­sic sta­tis­ti­cal proper­ti­es of the new mo­del are stu­di­ed. Furt­her, the Ba­ye­si­an in­fe­ren­ce and fo­re­casting as app­li­ed to the Full Range Au­to­reg­r­es­sive mo­del are de­ri­ved. The Ca­na­di­an lynx data is used to com­pa­re the ef­fi­ci­ency of the pre­dic­tive po­wer of the new mo­del with tho­se of some of the exist­ing mo­dels in the time se­ri­es li­te­ra­tu­re.

  • 2012. május 18., 10 óra
    Vető BálintBonn, Németország
    Non-colliding Brownian bridges and the asymmetric tacnode process

    We cons­ider non-coll­iding Brow­ni­an bridges start­ing from two points and re­tur­ning to the same po­sit­i­on. The­se po­sit­ions are cho­s­en such that, in the li­mit of lar­ge num­ber of bridges, the two fa­mi­li­es of bridges just to­uch each ot­her form­ing a tac­no­de. We ob­ta­in the li­mit­ing pro­cess at the tac­no­de, the (asym­met­ric) tac­no­de pro­cess. It is a de­ter­mi­nan­tal point pro­cess with cor­re­la­ti­on kern­el gi­ven by two pa­ra­me­ters:
    (1) the cur­vat­u­re’s ra­tio of the li­mit sha­pes of the two fa­mi­li­es of bridges,
    (2) a pa­ra­me­ter cont­roll­ing the in­ter­ac­ti­on on the fluc­tu­a­ti­on scale.
    This ge­ne­ra­li­zes the re­sult for the sym­met­ric tac­no­de pro­cess.

  • 2012. május 11., 11 óra
    Varga LászlóELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Súlyozott bootstrap GARCH-folyamatokra

    A boot­strap mód­sze­rek jól hasz­nál­ha­tók össze­füg­gő ada­tok, így idő­so­rok ese­tén is. Francq-Za­ko­ian [1] ered­mé­nye­it fel­hasz­nál­va si­ke­rült bi­zo­nyí­ta­ni, hogy GARCH\((p,q)\) fo­lya­ma­tok ese­tén a sú­lyo­zott boot­strap kvá­zi ML-becs­lés aszimp­to­ti­ku­san tor­zí­tat­lan az ere­de­ti pa­ra­mé­te­rek­re néz­ve, és a becs­lés aszimp­to­ti­ku­san nor­má­lis el­osz­lá­sú. A sú­lyok­ról fel­tesszük, hogy füg­get­le­nek a fo­lya­mat­tól, egy va­ló­szí­nű­ség­gel po­zi­tí­vak, lé­te­zik első két mo­men­tu­muk és gyen­ge köz­tük a kor­re­lá­ció. A bi­zo­nyí­tás fő esz­kö­zei a Tay­lor-sor­fej­tés, a sta­ci­o­ná­ri­us fo­lya­ma­tok er­god­té­te­le, a Berns­tein-té­tel, a Linde­berg-féle mart­in­gál­kon­ver­gen­cia-té­tel és a Cra­mér–Wold-té­tel. Vizs­gál­tuk a té­tel gya­kor­la­ti al­kal­maz­ha­tó­sá­gát is, a kon­ver­gen­cia se­bes­sé­gét spe­ci­á­lis mo­del­lek­ből szi­mu­lált ada­tok­ra.
    [1] C.Francq, J. Za­ko­ian: GARCH mo­dels. Wi­ley, 2010.

  • 2012. május 11., 10 óra
    Herczegh AttilaELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Árnyékár hatvány-hasznosság esetén

  • 2012. május 4., 10 óra
    Mélykúti Bence
    A kémiai reakciókinetika sztochasztikus differenciálegyenlet-modelljei: a kémiai Langevin-egyenlet, és hogy miért kellene egy új modell

    Be­ve­ze­tés­ként szto­cha­szi­kus fo­lya­ma­tok né­hány rend­szer­bio­ló­gi­ai al­kal­ma­zá­sát fo­gom be­mu­tat­ni. Az elő­adá­som fő cél­ja a (bio)ké­mi­ai re­ak­ció­ki­ne­ti­ka stan­dard Ito-tí­pu­sú szto­chasz­ti­kus dif­fe­ren­ci­ál­egyen­le­té­nek (szde), a ké­mi­ai Lan­ge­vin-egyen­let­nek (kLe) vizs­gá­la­ta lesz. A mart­in­gál­prob­lé­ma és az szdek gyen­ge meg­ol­dá­sai kö­zöt­ti kap­cso­lat­ra tá­masz­kod­va a kLe-t kü­lön­bö­ző, egy­más­sal gyen­gén ek­vi­va­lens ala­kok­ban ír­hat­juk fel. Ta­nul­má­nyo­zom majd, leg­alább hány füg­get­len Wi­e­ner-fo­lya­mat szük­sé­ges egy ilyen ek­vi­va­lens alak­hoz, és meg­vi­lá­gí­tom a mö­göt­tes geo­met­ri­ai je­len­tést. Le­ve­ze­tek egy má­sik ala­kot is, amely az egyen­let nu­me­ri­kus szi­mu­lá­ci­ó­já­nak fel­gyor­sí­tá­sá­ra al­kal­mas. Meg­mu­ta­tom azt is, hogy az első és má­so­dik mo­men­tu­mok szem­pont­já­ból a kLe tű­nik a ké­mi­ai re­ak­ció­ki­ne­ti­ka leg­jobb Ito-tí­pu­sú szde-mo­dell­jé­nek. De­monst­rál­ni fo­gom, hogy az ere­de­ti for­má­já­ban a kLe egyes vál­to­zói po­zi­tív va­ló­szí­nű­ség­gel ne­ga­tív­vá vál­hat­nak. Ez azt a kér­dést veti fel, vane a ké­mi­ai re­ak­ció­ki­ne­ti­ká­nak egy­sze­rű és ter­mé­sze­tes, a nem­ne­ga­ti­vi­tást meg­őr­ző, foly­to­nos ér­té­kű szto­chasz­ti­kus mo­dell­je.

  • 2012. március 30.
    Backhausz ÁgnesELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Egy háromszögekből épített véletlengráf-modell

    Az elő­adás­ban egy vé­let­le­nül fej­lő­dő gráf­mo­dellt mu­ta­tunk be, mely­ben min­den lé­pés­ben há­rom csúcs lép köl­csön­ha­tás­ba, és e csú­csok ki­vá­lasz­tá­sa­kor nem csu­pán az ép­pen ér­vé­nyes fok­szá­mo­kat vesszük fi­gyelm­be, ha­nem azt is, hogy az egyes cso­por­tok hány­szor sze­re­pel­tek együtt ko­ráb­ban. Ez­zel ská­la­füg­get­len tu­laj­don­sá­gú mo­dellt ka­punk, mely­ben a csú­csok fo­ká­nak (hány kü­lön­bö­ző csúccsal lép­tek köl­csön­ha­tás­ba) és sú­lyá­nak (össze­sen hány­szor vet­tek részt köl­csön­ha­tás­ban) együt­tes el­osz­lá­sát is meg­vizs­gál­juk. Az ered­mé­nyek Móri Ta­más­sal kö­zö­sek.

  • 2012. március 23.
    Charles TaylorUniversity of Leeds
    Boosting kernel estimates

    Kern­el den­sity est­ima­ti­on can be used to imp­le­ment an est­ima­te of Ba­yes’ rule for clas­si­fi­ca­ti­on. Kern­el func­tions can also be used in non­pa­ra­met­ric reg­r­es­si­on, and all th­ree to­pics (clas­si­fi­ca­ti­on, reg­r­es­si­on and clus­te­ring) are examp­les of “sta­tis­ti­cal lear­ning”. Bo­ost­ing — an ite­ra­tive pro­ce­du­re for imp­ro­ving est­ima­tes — is inc­re­a­singly wi­dely used due to its imp­r­es­sive per­fro­mance. In this talk we give an int­ro­duc­ti­on to the­se kern­el met­hods as well as to bo­ost­ing. We show how to imp­le­ment bo­ost­ing in each case, and il­lustra­te (both the­o­re­ti­cally, and by examp­le) the ef­fect on bias and va­ri­ance.

  • 2012. március 2., 10 óra
    Kunszenti-Kovács DávidELTE TTK Számítógéptudományi Tanszék
    A Jacobs-deLeeuw-Glicksberg felbontási tétel és ergodelméleti alkalmazásai

  • 2012. február 24., 10 óra
    Kamil Feridun TurkmanUniversity of Lisbon, Portugália
    Some statistical issues in the construction of annual fire risk maps based on fire frequency data

    Wild fi­res ca­u­se ex­ten­sive loss of property and life and inf­lict hea­vy da­mage on ecosys­tems, the­re­fo­re they are a re­le­vant pub­lic po­li­cy is­sue, par­ti­cu­larly in Por­tugal. Po­li­cy res­pon­ses for lo­cal and glo­bal fire ma­nag­ement de­pend hea­vily on the proper un­der­stand­ing of the fire ex­tend as well as its spa­tio-tem­po­ral va­ri­a­ti­on ac­ross any gi­ven study area, and an­nu­al fire risk maps are im­por­tant de­ci­si­on sup­port to­ols in de­vi­sing such po­li­cy res­pon­ses. An­nu­al fire risk maps are con­struc­ted bas­ed on an­nu­al sa­tel­li­te ima­gery data, which in its raw sta­te, con­sist of the the lo­ca­ti­on of ob­ser­ved fire scars in space and the­ir si­zes. Ide­ally such data set can be as­sum­ed to be ge­ne­ra­ted by a spa­tio-tem­po­ral mar­ked point pro­cess, disc­re­te in time, con­ti­nu­o­us in space, and fire risk maps can be pro­du­ced by est­imat­ing the pre­dic­tive dis­t­ri­bu­ti­on of the in­ten­sity func­ti­on of the point pro­cess. Howe­ver, the­re are for­mi­dab­le comp­uta­ti­o­nal is­sues as­so­ci­a­ted with this app­ro­ach. Of­ten, the raw data is disc­re­ti­zed in space over a pre-cho­s­en grid of de­si­red re­so­lu­ti­on, trans­form­ing it into fire fre­qu­ency data con­sisting of fire in­ter ar­ri­val times. Fire fre­qu­ency stu­di­es then fo­cus on est­imat­ing the dis­t­ri­bu­ti­on of two re­la­ted ran­dom va­ri­a­b­les, na­mely the time sin­ce last fire in a spa­ti­al unit, ie the sur­vi­val func­ti­on and the time bet­ween two con­se­cu­tive fi­res, ie. mor­ta­lity. The ha­zard func­ti­on which is the rate of mor­ta­lity con­di­ti­o­nal on sur­vi­val un­til time t ties to­get­her the sur­vi­val and the mor­ta­lity dis­t­ri­bu­tions and the­re­fo­re is the tar­get qu­an­tity for mo­deling fire fre­qu­ency data and pro­du­cing an­nu­al fire risk maps. In this talk, we look at exist­ing prac­ti­ces in pro­du­cing the­se maps and we sug­gest imp­ro­ve­ments in the exist­ing met­hods by in­cor­porat­ing the strong spa­ti­al de­pen­den­ce that exists bet­ween the grid cells which re­du­ce bias as well as va­ri­ance in est­ima­ted risks.

  • 2012. február 17., 10 óra
    Csóka EndreELTE TTK Számítógéptudományi Tanszék
    Egy eldönthetetlenségi probléma ritka gráfok limeszéről

    Gi­ven a set \(B\) of fi­ni­te ro­o­ted gra­phs and a ra­di­us \(r\) as in­put, we pro­ve that it is un­de­ci­dab­le to de­ter­mi­ne whet­her the­re exists a se­qu­en­ce \((G_i )\) of fi­ni­te bo­un­ded deg­ree gra­phs such that the ro­o­ted \(r\) ra­di­us ne­igh­bour­ho­od of a ran­dom node of \(G_i\) is iso­mor­phic to a ro­o­ted gra­ph in \(B\) with pro­ba­bi­lity tend­ing to 1. Our pro­of imp­li­es a si­mil­ar re­sult for the case whe­re the se­qu­en­ce \((G_i )\) is rep­la­ced by a uni­mo­du­lar ran­dom gra­ph.

  • 2012. január 6., 10 óra
    Szabó BotondTU Eindhoven/EURANDOM, Eindhoven, Hollandia
    Nem-paraméteres bayesi adaptációs technikák aszimptotikus viselkedésének vizsgálata

    Az utób­bi évek­ben egy­re nép­sze­rűbb lett ba­ye­si tech­ni­kák al­kal­ma­zá­sa ma­ga­sabb di­men­zi­ós és nem-pa­ra­mé­te­res sta­tisz­ti­kai prob­lé­mák meg­ol­dá­sá­ban. A két leg­nép­sze­rűbb adap­tá­ci­ós ba­ye­si tech­ni­ka az em­pi­ri­kus és a hi­e­rar­chi­kus ba­ye­si mód­szer. Az elő­adá­som so­rán fő­leg az em­pi­ri­kus ba­ye­si tech­ni­ká­val fo­gok fog­lal­koz­ni, de ki­té­rek a két mód­szer kö­zöt­ti pár­hu­zam­ra és tel­je­sít­mé­nyük össze­ha­son­lí­tá­sá­ra is. Nem-pa­ra­mé­te­res ba­ye­si sta­tisz­ti­ká­ban az a posz­te­ri­o­ri el­osz­lás aszimp­to­ti­kus vi­sel­ke­dé­se nagy­ban függ az a pri­o­ri el­osz­lás meg­vá­lasz­tá­sá­tól. Lát­szó­la­go­san jó a pri­o­ri el­osz­lás is in­kon­zisz­tens vagy szub-op­ti­má­lis a posz­te­ri­o­ri el­osz­lás­hoz ve­zet­het. A prob­lé­ma egyik le­het­sé­ges meg­ol­dá­sa adap­tá­ci­ós tech­ni­kák hasz­ná­la­ta. Adott a pri­o­ri el­osz­lás he­lyett egy csa­lád a pri­o­ri el­osz­lás­sal dol­go­zunk, me­lyet egy hi­per­pa­ra­mé­ter ír le, és hagy­juk, hogy a min­tánk ki­vá­lassza az op­ti­má­list. Az em­pi­ri­kus ba­ye­si mód­szer­ben a hi­per­pa­ra­mé­tert frek­ven­tis­ta mód­sze­rek­kel be­csül­jük, míg a hi­e­rar­chi­kus ba­ye­si el­já­rás­ban egy hi­per a pri­or el­osz­lás­sal lát­juk el a hi­per­pa­ra­mé­tert. A ku­ta­tá­sunk so­rán a Gauss fe­hér zaj mo­del­lel fog­lal­koz­tunk bő­veb­ben és ta­nul­má­nyoz­tuk az em­pi­ri­kus ba­ye­si el­já­rás aszimp­to­ti­kus vi­sel­ke­dé­sét raj­ta. To­váb­bá in­ver­ze prob­lé­mák adap­tá­ci­ó­ját és adap­tív ba­ye­si in­ter­val­lum­becs­lést vizs­gál­tuk.
    Té­ma­ve­ze­tők: Aad van der Vaart és Har­ry van Zan­ten

  • 2011. december 2., 11 óra
    Barczy MátyásDebreceni Egyetem, Informatikai Kar
    Inhomogén diffúziós folyamatok és hidak

    Az in­ho­mo­gén dif­fú­zi­ós fo­lya­ma­tok és a be­lő­lük szár­maz­ta­tott hi­dak fon­tos sze­re­pet ját­sza­nak a szto­chasz­ti­ká­ban és al­kal­ma­zá­sa­i­ban. Több­di­men­zi­ós li­ne­á­ris in­ho­mo­gén dif­fú­zi­ós fo­lya­ma­tok­ra vo­nat­ko­zó hi­da­kat konst­ru­á­lunk, meg­ad­va ezek in­teg­rál- és ún. an­ti­ci­pa­tív rep­re­zen­tá­ci­ó­ját. Egy­di­men­zi­ó­ban, spe­ci­á­lis eset­ként, kü­lön tár­gyal­juk az ún. Orns­tein Uh­len­beck tí­pu­sú hi­da­kat. Al­kal­ma­zás­ként meg­vizs­gál­juk, hogy mi­kor esik egy­be egy ún. ál­ta­lá­nos \(\alpha\)-Wi­e­ner híd el­osz­lá­sa va­la­mely Orns­tein-Uh­len­beck tí­pu­sú híd el­osz­lá­sá­val. Az ered­mé­nyek Pe­ter Kern­nel kö­zö­sek.

  • 2011. november 19.
    Varga LászlóELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Bootstrap módszerek és alkalmazásuk összefüggő adatsorokra

    Az újra-min­ta­vé­te­le­zé­si mód­sze­rek (re­samp­ling met­hods) vi­szony­lag rö­vid múlt­ra te­kin­te­nek vissza. A boot­strap is ezek közé tar­to­zik, Ef­ron dol­goz­ta ki az első, úgy­ne­ve­zett i.i.d. boot­strap mód­szert 1979-ben, amit fel­fog­ha­tunk a jackk­nife ki­ter­jesz­té­se­ként. Az­óta a szá­mí­tó­gé­pek tel­je­sít­mé­nyé­nek ro­ha­mos nö­ve­ke­dé­se kö­vet­kez­té­ben a mód­szer nép­sze­rű­sé­ge is je­len­tő­sen meg­nőtt, és sok­ol­da­lú al­kal­ma­zá­si le­he­tő­sé­gei mel­lett meg­mu­tat­koz­tak az ilyen jel­le­gű mód­sze­rek kor­lá­tai is: össze­füg­gő ada­tok ese­tén az i.i.d boot­strap becs­lé­sek szá­mos lé­nye­ges eset­ben nem lesz­nek kon­zisz­ten­sek. A mód­szer meg­fe­le­lő mó­do­sí­tá­sá­val —az újra-min­ta­vé­te­le­zést egyes adat­ele­mek he­lyett adat­blok­kok­kal el­vé­gez­ve— ezt a ne­héz­sé­get le le­het küz­de­ni. Ilyen, ún. blokk boot­strap mód­sze­rek ese­tén a fő kér­dés, hogy mi­lyen blokk­mé­re­tet hasz­nál­junk. Az op­ti­má­lis blokk­mé­ret több té­nye­ző­től is függ: az adat­ge­ne­rá­ló fo­lya­mat­tól, a ben­nün­ket ér­dek­lő sta­tisz­ti­ká­tól és at­tól is, hogy mi a boot­stra­p­elés vég­ső cél­ja (pl. va­ri­an­cia vagy el­osz­lás becs­lé­se). A mód­sze­re­ket észak né­met­or­szá­gi szél­se­bes­sé­gi ada­tok­ra al­kal­maz­tuk. Az egy­di­men­zi­ós elem­zé­sek mel­lett két­di­men­zi­ós il­lesz­tést is vé­gez­tünk: ki­vá­lasz­tot­tuk a leg­job­ban il­lesz­ke­dő ko­pu­la-mo­dellt.

  • 2011. november 18., 10 óra 30 perc
    Orlovits ZsanettBME Matematikai Intézet Differenciálegyenletek Tanszék, Budapest
    Sztochasztikus volatilitásmodellek statisztikai vizsgálata

    A pénz­ügyi ma­te­ma­ti­ka egy klasszi­kus-mo­dern fe­je­ze­te a pénz­ügyi idő­so­rok elem­zé­se. Is­me­re­tes, hogy olyan je­len­sé­gek, mint pl. a ”vo­la­ti­lity clus­te­ring” (hosszabb ide­ig tar­tó ala­csony vo­la­ti­li­tá­sú pe­ri­ó­du­so­kat rö­vid, na­gyobb vo­la­ti­li­tá­sú sza­ka­szok kö­vet­nek) a ha­gyo­má­nyos li­ne­á­ris mo­del­lek­kel nem ír­ha­tók le. Az egyik leg­is­mer­tebb, nem-li­ne­á­ris szto­chasz­ti­kus vo­la­ti­li­tás mo­dell az ún. ARCH ill. GARCH mo­dell. A GARCH fo­lya­ma­tok pa­ra­mé­ter­becs­lé­sé­nek iro­dal­ma szin­te ki­zá­ró­la­go­san az off-line kvá­zi ma­xi­mum-li­ke­li­ho­od becs­lés mód­sze­ré­vel fog­lal­ko­zik. Azon­ban is­me­re­tes, hogy a pénz­ügyi idő­so­rok gyak­ran adat­ban gaz­da­gok, ezért egy re­kur­zív (on­line) becs­lé­si mód­szer hasz­ná­la­ta al­kal­ma­sabb és ke­vés­bé költ­sé­ges len­ne. A szto­chasz­ti­kus app­ro­xi­má­ció el­mé­le­té­nek esz­köz­tá­rát fel­hasz­nál­va re­kur­zív al­go­rit­must adunk a GARCH fo­lya­mat pa­ra­mé­te­re­i­nek becs­lé­sé­re, és iga­zol­juk a konst­ru­ált al­go­rit­mus 1 va­ló­szí­nű­sé­gű és \(L^q\) kon­ver­gen­ci­á­ját. Az elő­ző­ek­hez kap­cso­ló­dó­an fel­me­rül a kér­dés, hogy erő­sebb fel­té­te­lek mel­lett erő­sebb ál­lí­tá­so­kat fo­gal­maz­zunk meg a log­li­ke­li­ho­od függ­vény­re. Ki­dol­go­zunk egy olyan ka­rak­te­ri­zá­ci­ós té­telt, mely­nek lé­nye­ge az, hogy a ma­xi­mum­li­ke­li­ho­od becs­lés hi­bá­ja két rész­re bont­ha­tó: a fő­tag egy mart­in­gál, a hi­ba­tag pe­dig \(1/N\) nagy­ság­ren­dű kor­lá­tos mo­men­tu­mok­kal, ahol \(N\) a min­ta­elem­szám.

  • 2011. szeptember 23., 10 óra
    Horváth IllésBME TTK Sztochasztika Tanszék, Budapest
    Hosszú memóriájú bolyongások és Kipnis-Varadhan-tételkör

    Hosszú me­mó­ri­á­jú bo­lyon­gá­sok kü­lön­bö­ző mo­dell­je­i­re bi­zo­nyí­tunk cent­rá­lis ha­tár­el­osz­lás-té­telt ver­za­ti­lis el­mé­le­ti esz­kö­zök ré­vén.

  • 2011. június 24.
    Varga László
    Bootstrap módszerek alkalmazása kopulák illeszkedésvizsgálatában

  • 2011. június 10.
    Herczegh AttilaELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Árnyékárak használata portfólióoptimalizálási feladatokban

  • 2011. május 27.
    Kiss DemeterCWI, Amszterdam, Hollandia
    Fagyott perkoláció, erdőtűzmodellek a végtelen bináris fán

  • 2011. május 6.
    Komjáthy JúliaBME TTK Sztochasztika Tanszék, Budapest
    Generating hierarchial scale-free graphs from fractals

    Mo­ti­vat­ed by the hi­e­rar­chial net­work mo­del of E. Ra­vasz, A.-L. Ba­ra­bá­si and T. Vi­csek, we int­ro­du­ce de­ter­mi­nis­tic scale-free net­works de­ri­ved from a gra­ph di­rec­ted self-si­mil­ar frac­tal \(\Lambda\). With ri­go­rous ma­the­ma­ti­cal re­sults we ve­ri­fy that our mo­del cap­tu­res some of the most im­por­tant fea­tu­res of many real net­works: the scale-free and the high clus­te­ring proper­ti­es. We also pro­ve that the dia­me­ter is the lo­ga­rithm of the size of the sys­tem. Us­ing our (de­ter­mi­nis­tic) frac­tal \(\Lambda\) we ge­ne­ra­te ran­dom gra­ph se­qu­en­ce sha­ring si­mil­ar proper­ti­es.

  • 2011. április 15.
    Martinek LászlóELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Biztosítási kockázatok becslése hiányos adatok esetén

  • 2011. április 1.
    Gerencsér BalázsELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Néhány reverzibilis és nem-reverzibilis Markov-lánc keverési idejének összehasonlítása

  • 2011. március 25.
    Prokaj VilmosELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Hogyan lehetne igazolni a Lévy-transzformáció ergodicitását?

  • 2011. március 11.
    Boros BalázsELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Kémiai reakciórendszerek egyensúlyi pontjainak létezéséről és egyértelműségéről

  • 2010. november 26.
    Rakonczai PálELTE TTK Valószínűségelméleti és Statisztika Tanszék
    Többdimenziós szintmeghaladási modellek a gyakorlatban: modellek és becslés

  • 2010. október 8.
    Ispány MártonDebreceni Egyetem, Informatikai Kar
    Aszimptotikus eredmények instabil egész értékű idősorokra

    Az utób­bi évek­ben több száz cikk je­lent meg egész ér­té­kű idő­so­rok­kal kap­cso­lat­ban, ame­lyek ak­kor lép­nek fel ha diszk­rét je­len­sé­gek, pl. da­rab- vagy eset­szá­mok idő­be­ni fej­lő­dé­sét sze­ret­nénk le­ír­ni. Bár szá­mos pár­hu­zam húz­ha­tó a va­lós ér­té­kű idő­so­rok­kal, mind az ered­mé­nyek­ben, mind az al­kal­ma­zott mód­sze­rek­ben nem várt, ko­ráb­ban nem is­mert je­len­sé­gek lép­nek fel. Az elő­adás­ban egész ér­té­kű au­to­reg­resszi­ós fo­lya­ma­tok (ún. INAR mo­del­lek) aszimp­to­ti­ká­já­val fog­lal­ko­zunk, el­ső­sor­ban az ún. in­sta­bil vagy kri­ti­kus eset­ben. Egy INAR mo­dellt ak­kor ne­ve­zünk in­sta­bil­nak, ha ka­rak­te­risz­ti­kus po­li­nom­já­nak az 1 gyö­ke. Az elő­adás­ban is­mer­te­ten­dő fő ered­mény azt mond­ja ki, hogy egy ilyen fo­lya­mat al­kal­mas nor­má­lás mel­lett úgy vi­sel­ke­dik, mint egy négy­ze­tes Bes­sel-fo­lya­mat. Tár­gyal­juk az INAR mo­del­lek kap­cso­la­tát a he­te­ro­sz­ke­dasz­ti­kus idő­sor mo­del­lek­kel, il­let­ve az el­ága­zó fo­lya­ma­tok­kal. Vé­gül né­hány pa­ra­mé­ter­becs­lés­sel kap­cso­la­tos kér­dés­ről esik szó, nyílt prob­lé­mák fel­ve­té­sé­vel együtt. Az ered­mé­nyek nagy rész­ben Bar­czy Má­tyás­sal és Pap Gyu­lá­val kö­zö­sek.