
EMPIRICAL DEEP HEDGING

Prof Juho Kanniainen
A joint work with Mr Oskari Mikkilä

Financial Computing and Data Analytics Group,
Dept of Computing Sciences,
Tampere University, Finland

juho.kanniainen@tuni.fi

This talk is based on paper
Mikkilä and Kanniainen (2023), “Empirical Deep Hedging”, Quantitative Finance, 23(1), 111-122.

Codes are available at https://github.com/oskarimikkila/Empirical-Deep-Hedging

7th Workshop on Understanding the Diversity of Financial Risk
Machine Learning for Prediction and Optimisation

Budapest, Hungary
November 24, 2023

https://github.com/oskarimikkila/Empirical-Deep-Hedging

WHERE I’M FROM

The Times:
Tampere, the fairytale

Finnish city
you’ve probably never heard of

https://www.thetimes.co.uk/article/the-
fairytale-finnish-city-you-ve-probably-never-

heard-of-57gtr6v9v

1,
59

1
km

Did you know that
the Finnish and

Hungarian languages
have common roots?

1 / 31

OUR RESEARCH: ML & HFT

▶ We have actively researched the prediction of the mid-price of stocks using high-frequency
limit order book data.

▶ The data used has been the Nasdaq ITCH feed, from which the states of the order books have
been reconstructed.

▶ The models can be used for trading, market making, market surveillance etc.
▶ Example papers:

• Shabani, M., Tran, D.T., Kanniainen, J. and Iosifidis, A., 2023. Augmented bilinear network
for incremental multi-stock time-series classification. Pattern Recognition (IF 7.196).
• Tran, D.T., Iosifidis, A., Kanniainen, J. and Gabbouj, M., 2018. Temporal

attention-augmented bilinear network for financial time-series data analysis. IEEE
Transactions on Neural Networks and Learning Systems (IF 14.255).
• Mäkinen, Y., Kanniainen, J., Gabbouj, M. and Iosifidis, A., 2019. Forecasting jump arrivals

in stock prices: new attention-based network architecture using limit order book data.
Quantitative Finance (IF 2.222).

Figure. Architecture of Augmented bilinear network
2 / 31

INVESTOR NETWORK RESEARCH

▶ In our investor network research, we analyze how
investors transform private information between each
other and utilize it in the stock market.

▶ We have developed methods to identify information
networks in stock markets (see Baltakienė et al. 2021).

▶ Additionally, we have introduced a graph neural
networks-based tool to rank investors according to
their suspiciousness regarding the use of insider
information (see Baltakys et al 2023).

▶ Example papers:
• Baltakienė, M., Kanniainen, J. and Baltakys, K.,

2021. Identification of information networks in
stock markets. Journal of Economic Dynamics and
Control (IF 1.9).
• Baltakys, K., Baltakienė, M., Heidari, N., Iosifidis,

A. and Kanniainen, J., 2023. Predicting the trading
behavior of socially connected investors: Graph
neural network approach with implications to
market surveillance. Expert Systems with
Applications (IF 8.5). 3 / 31

EMPIRICAL OPTION PRICING

▶ Here, the focus has been on analyzing the empirical
performance of alternative volatility and jump models.

▶ Moreover, recently we have applied Reinforcement
Learning to the hedging of index options. This
direction appears very promising, offering a number of
topics for future research.

▶ Example papers:
• Kanniainen, J., Lin, B. and Yang, H., 2014.

Estimating and using GARCH models with VIX
data for option valuation. Journal of Banking &
Finance (IF 3.7).
• Yang, H. and Kanniainen, J., 2017. Jump and

volatility dynamics for the S&P 500: Evidence for
infinite-activity jumps with non-affine volatility
dynamics from stock and option markets. Review
of Finance (IF 5.059).
• Mikkilä, O. and Kanniainen, J., 2023. Empirical

deep hedging. Quantitative Finance (IF 2.222).

4 / 31

MOTIVATION FOR HEDGING WITH REINFORCEMENT LEARNING

▶ Under stochastic volatility with two sources of uncertainty in the model, delta hedging alone is
insufficient to eliminate all risk.

▶ In option hedging, a tradeoff exists between minimizing the variance of wealth increments and
the transaction costs.

▶ The hedging problem can be naturally expressed using Reinforcement Learning (RL):
Observing the state of the environment necessitates taking actions to adjust the number of
underlying shares held in the portfolio, which, in turn, directly impacts the state.

▶ It is not surprising that considerable attention has been devoted to hedging options using RL,
as evidenced by several studies (Kolm and Ritter 2019; Buehler et al. 2018; Kolm and Ritter
2020; Cao et al. 2021; Halperin 2019; Halperin 2020; Du et al. 2020; Giurca and Borovkova 2021).

▶ Thus far, research papers have trained agents using synthetic data generated by specific
volatility and/or jump models.

▶ We demonstrate how to successfully train RL agents purely through data-driven methods
using empirical option data, without prior specification of the underlying volatility or jump
processes.

5 / 31

DEEP REINFORCEMENT LEARNING
BASICS

▶ RL systems have two entities that interact with
each other: an agent and an environment.

▶ The optimal action of an agent is defined as an
action that maximizes the expected lifetime
reward in light of the observations on the current
environment.

▶ Once the reward and other settings are
determined by a user, the machine employs trial
and error to iteratively develop an optimal
solution to the problem.

▶ Perhaps the most important innovation in RL has
been the combination of RL and deep neural
networks to capture the optimal policies. Source of the figure:

https://se.mathworks.com/discovery/

reinforcement-learning.html

6 / 31

https://se.mathworks.com/discovery/reinforcement-learning.html
https://se.mathworks.com/discovery/reinforcement-learning.html

DEEP REINFORCEMENT LEARNING
BASICS

▶ At each time step, an agent observes the state of the environment, st ∈ S, and then selects an
action at ∈ Awith respect to its deterministic policy µ : S → Awith parameter vector ϕ ∈ Rn.

▶ After taking action at, the agent receives a reward rt+1 ∈ R, determined by a reward function
R : S ×A → R, and observes a new state of the environment st+1.

▶ Then based on st+1, an agent takes a new action at+1, receiving reward rt+2 and so on.
▶ As a result, we have a trajectory s0, a0, r1, s1, a1, r2, . . . This continues until a terminal state is

reached.
▶ The period between the start and terminal states is called an episode.
▶ In this paper, the episode is five trading days long with 35 time stamps (length of the step is one

trading our).
▶ The problem is modelled as a Markov Decision Process (MDP) with a stationary transition

dynamics distribution with conditional density p(st+1|s1, a1, . . . , st, at) = p(st+1|st, at) (history
does not matter).

▶ Discrete actions have a known, limited space of available actions.
▶ Continuous actions might have upper and lower limits, but any action in between can be

chosen.
▶ Therefore, continuous actions are in line with the assumption of frictionless in delta hedging,

for which reason this research is based on the continuous action space.
7 / 31

DEEP REINFORCEMENT LEARNING
REWARD

▶ The total cumulative discounted reward from time-step t onwards is defined by

r̃t =

∞∑
i=0

rt+iγ
i,

where rt+i = R(st+i−1, at+i−1) is the immediate reward received at time t + i and γ is the
discount parameter with 0 < γ ≤ 1.

▶ Agent’s goal is to find the optimal policy µ with parameters ϕ to maximize the expected
cumulative reward over the entire episode, which can be written as

J(µϕ) =

∫
S
ρµϕ(s; t)R(s, a)ds

= Es∼ρ
µϕ [̃rt|µϕ] ,

where a = µ(s|ϕ) and ρµϕ is the discount state distribution,

ρµϕ(s′; t) :=
∫
S

∞∑
i=0

γt+ipt(s)p(s→ s′; t + i, µϕ)ds,

where s′ is a state after transitioning for t + i time steps from state s with probability
p(s→ s′; t + i, µϕ) and µϕ is the policy function with parameters ϕ.

8 / 31

DEEP REINFORCEMENT LEARNING
LEARNING PROCEDURE

▶ In Q-learning (Watkins and Dayan 1992), the goodness of an action is evaluated in terms of the
expected reward.

▶ Given that r̃t =
∑∞

i=0 rt+iγ
i, let us define the value of action a in state s under policy µϕ as the

expected reward:

Qµϕ(s, a) = Es∼ρ
µϕ [̃rt|st = s, at = a;µϕ]

= r(st, at) + γEs∼ρ
µϕ [Qµϕ (st+1, µ(st+1|ϕ))] ,

(1)

where a is determined by µϕ(s).
▶ Following Mnih et al. (2013), in deep Q-learning, the optimal action-value function

Q(s, a|θ) ≈ Q∗(s, a) = max
ϕ

Qµϕ(s, µ(s|ϕ))

is approximated by (deep) neural networks.
▶ If the action space is continuous, enumerating all possible actions is impractical due to their

infinite number. This challenge is addressed by employing function approximators with two
neural networks:
• actor µ(s|ϕ) (used for selecting actions)
• critic Q(s, a|θ) (criticizes/evaluates the actions taken by the actor)

with parameters ϕ and θ, respectively.
9 / 31

DEEP REINFORCEMENT LEARNING
LEARNING PROCEDURE

▶ Multiple algorithms have been introduced to estimate the
action-value function Qµϕ(s, a).

▶ In continuous action space research, perhaps the best known
deterministic policy gradient algorithm is the Deep
Deterministic Policy Gradients (DDPG) by Lillicrap et al.
(2015).

▶ DDPG is known as the equivalent of Deep Q-Learning for
continuous action space.

▶ The idea is that the actor directly maps states to actions
instead of outputting the probability distribution across a
discrete action space.

▶ For a given actor, the expected rewards depends only on the
environment.

▶ DDPG is off-policy, meaning that the agent learns from
experiences that may have been generated from a different
policy than the one it is currently optimizing.

▶ The policy µ(s|ϕ) can be updated through the deterministic
policy gradient algorithm (DPG).

The actor network

The critic network

𝜇 𝑠 𝜙 (Action)

𝑠 (State)

𝑄 𝑎, 𝑠 𝜃 with 𝑎 = 𝜇 𝑠 𝜙 (Critic)

10 / 31

DEEP REINFORCEMENT LEARNING
LEARNING PROCEDURE

▶ Function approximator is optimized by minimizing

L(θi) = Esi,ai,ri,si+1 (Q(si, ai|θi)− yi)
2 (2)

with respect to θ, where
yi = r(si, ai) + γQ(si+1, a∗i |θ

∗
i), (3)

is the target. Here a∗i = µ(s|ϕ∗) + ϵ is the target action, where ϵ is exploration noise.
▶ That is, we create target versions for both the actor and critic neural network models, Q(s, a|θ∗)

and µ(s|ϕ∗), to calculate the target values.
▶ The primary role of Q(s, a|θ∗) is to estimate the future value of actions taken in the next state

(not the current state where the immediate reward r(si, ai) is received.
▶ Temporal difference parameters θ∗i and ϕ∗

i are used to compute the target at iteration i + 1.
▶ The main critic network estimates the Q-value (action-value) for the current state and action,

while the target critic network estimates the Q-value for the next state and the action chosen by
the target actor network.

11 / 31

DEEP REINFORCEMENT LEARNING
LEARNING PROCEDURE

▶ In Monte Carlo methods, value estimates are updated only at the end of an episode, based on
the total accumulated reward. Temporal Difference (TD) Learning, on the other hand, updates
value estimates based on other, already learned estimates, and it does so after each step, not
waiting for the episode to finish.

▶ Imagine a simple game where an agent moves through a given sequence of states, say
(S1,S2,S3, . . .SN) towards a goal. The agent receives a reward only upon reaching the final state
SN. With TD,
• The agent moves from S1 to S2. It doesn’t know the final outcome yet, but it updates the

value of S1 based on its estimate of S2’s value and the reward received (if any) from
moving to S2.
• This process repeats at each step. When moving from S2 to S3, the value of S2 is updated

based on the estimated value of S3.
• Essentially, the value of each state is updated by looking ahead one step, using the value

estimate of the next state.
▶ In this paper, we use Twin Delayed Deep Deterministic Policy Gradients, TD3, introduced by

Fujimoto, Hoof, and Meger (2018). TD3 can be seen as an extension of DDPG.
▶ The advantage of TD3 is that it minimizes the effect of overestimation bias using two critic

networks to mitigate, taking the minimum of their Q-value estimates.
▶ It has six neural networks in total: 1× actor, 2× critic and own target networks for each three.

12 / 31

DEEP REINFORCEMENT LEARNING
LEARNING PROCEDURE

Algorithm 1: TD3 Algorithm (Source Fujimoto, Hoof, and Meger 2018)
Result: Initialize critic networks Qθ1 ,Qθ2 , and actor network πϕ with random parameters θ1, θ2, ϕ

1 Initialize target networks θ∗1 ← θ1, θ
∗
2 ← θ2, ϕ

∗ ← ϕ
2 Initialize replay buffer B
3 for t = 1 to T do
4 Select action with exploration noise a ∼ πϕ(s) + ϵ, ϵ ∼ N (0, σ) and observe reward r and new

state s′

5 Store transition tuple (s, a, r, s′) in B
6 Sample mini-batch of N transitions (s, a, r, s′) from B
7 a∗ ← πϕ∗(s′) + ϵ, ϵ ∼ clip(N (0, σ∗),−c, c)
8 y← r + γmini=1,2 Qθ∗i

(s′, a∗)
9 Update critics θi ← argminθi

1
N
∑

(y−Qθi(s, a))2

10 if t mod d = 0 then
11 Update ϕ by the deterministic policy gradient:
12 ∇ϕJ(ϕ) = 1

N
∑
∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)

13 Update target networks:
14 θ∗i ← τθi + (1− τ)θ∗i
15 ϕ∗ ← τϕ+ (1− τ)ϕ∗

16 end
17 end

13 / 31

DEEP REINFORCEMENT LEARNING FOR HEDGING
EARLIER RESEARCH

▶ Kolm and Ritter (2019) and Du et al. (2020) use methods with discrete action space.
Additionally, Halperin (2020) considers both discrete-space and continuous-space versions but
with (non-deep) Q-learning without the use of neural networks

▶ There are also papers working on continuous action domain, such as (Cao et al. 2021) and
(Giurca and Borovkova 2021) using DDPG.

▶ However, when testing simpler methods than TD3, including DDPG, we observed that they
either failed to converge or began to learn and then later diverged.

▶ At the same time, the stabilizing features introduced in TD3 appeared to render it the most
viable method.

14 / 31

DEEP REINFORCEMENT LEARNING FOR HEDGING
REWARD FUNCTION

▶ To derive the reward function, we follow Cao et al. (2021) to maximize

E(wT)− ξSD(wT),

with ξ > 0, where wT is the wealth at time T.
▶ Kolm and Ritter (2019) and Du et al. (2020) use a nearly identical objective function, but they

consider variance instead of standard deviation.
▶ The reward rt should be a function of wealth increments, thus

E(rt) = E(∆wt)− ξSD(∆wt).

▶ At each step, we approximate the one-period reward function as

rt = PnLt − ξ |PnLt| , (4)

where PnLt (Profit-and-Loss) is the change in agent’s wealth between time steps:

PnLt = HO
t (Ct − Ct−1) + HS

t (St − St−1)− c
∣∣∣St

(
HS

t −HS
t−1

)∣∣∣ . (5)

▶ Here HO
t is the option position, which equals -1 (+1) for a short (long) call option position, Ct is

the price of the option, HS
t represents the holdings in the underlying asset at time t, being

positive (negative) for a short (long) call option position, St is the price of the underlying asset
at time t, and c denotes the transaction costs.

▶ There is a trade-off between transaction costs (c) and the risk caused by insufficient rebalancing
(the standard deviation of the P&L).

15 / 31

DEEP REINFORCEMENT LEARNING FOR HEDGING
STATES

▶ Actions are determined by the state of the environment, which is captured by the following
variables:
• Moneyness
• Time to maturity
• Current number of shares held
• Implied volatility

▶ The state does not need to include the option Greeks (the neural networks can infer them from
the state variables).

▶ Moreover, to learn a policy independent of any pricing model and to investigate if Deep
Reinforcement Learning (DRL) can independently learn a hedging policy, it is important to
exclude Greeks.

▶ As neural networks are universal function approximators, the Black-Scholes delta hedging can
be considered as a special case within our model.

▶ We implement z-score normalization for the input variables.

16 / 31

DEEP REINFORCEMENT LEARNING FOR HEDGING
SETTINGS

▶ We set the hedging interval to 60 minutes (equals seven re-balances a day).
▶ Episode length will be set to 35 time-steps, i.e. five trading days.
▶ For TD3 hyper parameters, τ = 0.001 controls how fast the target networks are updated.
▶ The NNs have three layers, each of size 250 (the adding of the 3rd layer provided marginal

improvement).
▶ For the activation functions of the hidden layers, we use Leaky ReLU with α = 0.05:

h(i) =

{
i if i > 0
α× i otherwise.

▶ The activation function for the actor’s output layer is hyperbolic tangent with outputs of a
range of [−1, 1], which then later scaled outside the neural network to a range of [0, 1].

▶ For the critic network, the output layer outputs a single value with linear activation.
▶ Together with a small learning rate (1E–04) and a high batch size of 10,000 a stabilizing effect is

achieved.
▶ Adam is used as an optimizer.

17 / 31

DATA

▶ We use S&P 500 index intraday options data from Jan 3rd, 2006 to Dec. 31st, 2013 (spanning
eight years, 2009 trading days), provided by CBOE Livevol.

▶ The option roots considered are those used by CBOE in the calculation of the VIX index.
▶ Given the hedging interval of 60 minutes, hourly observations are utilized.
▶ We assume that the underlying asset can be traded in any fractional amount.
▶ Transaction costs are assumed to be 1 BPS. If transaction costs were large, the DRL agent would

outperform the classic Black-Scholes delta hedging strategy “too easily”, as the DRL agent can
strategically avoid transaction costs.

▶ The training data includes options with moneyness 0.83 ≤ S/K ≤ 1.17 and options set to expire
within 10–90 days, each considered over a 5-day episode.

▶ For empirical validation and testing, the target strikes are set at S/K ∈ [0.85, 0.925, 1, 1.075, 1.15]
and target maturity times are 10, 30, and 60 days. Options closest to these target strikes and
maturities (in percentage terms) are selected, and then utilized for a 5-day episode.

18 / 31

DATA
Table. Snapshot of option data.

Time Code Underlying Strike Days to mat. Rate Call price Call bid Put price Put bid
2006-Jan-03 09:31 SPX 1253.00 800 18 0.0438 454.45 454.2 0.1 0
2006-Jan-03 09:31 SPX 1253.00 825 18 0.0438 429.45 429.2 0.1 0

... ...
2006-Jan-03 09:31 SXZ 1253.00 1400 18 0.0438 0.1 0 144.25 144
2006-Jan-03 09:31 SXM 1253.00 1500 18 0.0438 0.1 0 244.05 243.8
2006-Jan-03 09:31 SPX 1253.00 800 46 0.0456 455.05 454.8 0.1 0
2006-Jan-03 09:31 SPX 1253.00 850 46 0.0456 405.35 405.1 0.1 0

... ...
2006-Jan-03 09:31 SPB 1253.00 1600 347 0.0478 0.65 0.55 297.85 297.6
2006-Jan-03 09:32 SPX 1253.72 800 18 0.0438 455.15 454.9 0.1 0

...
2006-Jan-03 16:00 SPB 1268.80 1600 347 0.0478 0.75 0.5 284.4 283.4

Table. Summary statistics on the number of unique option contracts and five-day paths for training,
validation, and test data.

Training data Validation data Test data
(2006–2011) (2012) (2013)

Unique options 7,228 1,539 1,683
Unique five-day paths 12,298 2,703 2,914

19 / 31

RESULTS
MONTE CARLO EXPERIMENTS

▶ In the Monte Carlo experiment, we generate synthetic data from both a constant volatility
model and a Heston stochastic volatility model, which are used to train the DRL agent.

▶ The parameter estimates for the Heston model in a given simulation were randomly selected
from the daily calibrations in 2012.

▶ To assess the hedging performance of the agent and the benchmarks with out-of-sample data,
we consider four measures from the tests:

(i) The mean episode P&L is the average of the total P&L over each five-day episode;
(ii) The episode P&L standard deviation is the standard deviation of the episode total P&Ls

over the 10,000 tests;
(iii) Mean episode transaction costs over each five-day episode;
(iv) Average rewards accumulated, as determined in Eq. (4).

▶ As described by Eq. (4), a greater ξ places more emphasis on minimizing risk (the standard
deviation of wealth). We report results with ξ = 1, 2, 3.

20 / 31

RESULTS
MONTE CARLO EXPERIMENTS

Table. Summary statistics on the estimated parameters obtained from daily calibrations of Heston 1993 model
in 2012. There were totally 249 trading days in 2012.

θ κ η ρ v0

Min 0.02 0.07 0.04 -1.00 0.01
Max 0.25 9.49 1.00 -0.45 0.08
Median 0.04 3.08 0.56 -0.78 0.02
Average 0.04 3.41 0.62 -0.79 0.03
Standard Deviation 0.02 1.60 0.31 0.16 0.01

Equations used in the Heston model calibration for 2012:

dSt = µStdt +
√

vtStdW1,t,

dvt = κ(vt − θ)dt + η
√

vtdW2,t,

where κ > 0, θ > 0, η > 0, and dW1,tdW2,t = ρdt, ρ ∈ [−1, 1].

21 / 31

RESULTS
MONTE CARLO EXPERIMENTS

Table. Deep reinforcement learning (DRL) agent’s performance and hedging cost against the classic
Black-Scholes delta hedging benchmark under constant volatility. The episode spans 5 days, and the option is
a call option expiring in two weeks. The hedge is rebalanced seven times daily. The reported results on P&L
and costs are scaled by the underlying price at the beginning of the periods. Panels A–C report the results for
ξ = 1, 2, 3.

Mean Std Mean episode
episode P&L episode P&L transaction costs Rewards

Panel A: ξ = 1
Black-Scholes Delta Hedging -0.0119 % 0.0426 % -0.0094 % 8.79
DRL Agent -0.0124 % 0.0459 % -0.0094 % 8.60

Panel B: ξ = 2
Black-Scholes Delta Hedging -0.0114 % 0.0436 % -0.0095 % 7.17
DRL Agent -0.0107 % 0.0490 % -0.0094 % 6.74

Panel C: ξ = 3
Black-Scholes Delta Hedging -0.0108 % 0.0428 % -0.0094 % 5.59
DRL Agent -0.0112 % 0.0478 % -0.0094 % 4.90

22 / 31

RESULTS
MONTE CARLO EXPERIMENTS

Table. Deep reinforcement learning (DRL) agent’s performance and hedging cost against the classic
Black-Scholes delta hedging benchmark under Heston stochastic volatility. The episode spans 5 days, and the
option is a call option expiring in two weeks. The hedge is rebalanced seven times daily. The reported results
on P&L and costs are scaled by the underlying price at the beginning of the periods. Panels A–C report the
results for ξ = 1, 2, 3.

Mean Std Mean episode
episode P&L episode P&L transaction costs Rewards

Panel A: ξ = 1
Black-Scholes Delta Hedging -0.0086 % 0.2628 % -0.0084 % 0.42
DRL Agent -0.0072 % 0.2343 % -0.0077 % 1.66

Panel B: ξ = 2
Black-Scholes Delta Hedging -0.0149 % 0.2551 % -0.0084 % -9.19
DRL Agent -0.0157 % 0.2263 % -0.0080 % -6.82

Panel C: ξ = 3
Black-Scholes Delta Hedging -0.0104 % 0.2606 % -0.0084 % -19.44
DRL Agent -0.0106 % 0.2301 % -0.0079 % -15.97

When volatility is stochastic, the DRL agent trained with the synthetic data from the Heston
model clearly outperforms the classic Black-Scholes delta hedging. 23 / 31

RESULTS
EMPIRICAL PERFORMANCE

We evaluate our empirical performance of DRL models that are trained by two different ways:
(i) We train the DRL agent using synthetic data from the calibrated Heston model and test the

trained agent with empirical option data (this model is used for Monte-Carlo experiment).
• The advantage is that there can be as many episodes as needed.
• Importantly, the policy an agent learns is dependent on the volatility model used.

(ii) We train and test the DRL agent using just empirical stock and option price observations
instead of the data generated from a model.
• Here an agent is trained without any assumptions about volatility dynamics.
• To our best knowledge, this is the first research that trains the agent in a completely

data-driven way.
• Totally, there are 12,298 unique 5-day periods for training, which was achieved by using

different strikes and expiry days for the same time period.
• This amount of data is found to be sufficient with TD3, which uses experience replay

(random samples of previous transitions).
• By that way, a tuple (si, ai, ri, si+1) can be used more than once by random sampling and it

addresses the problem of a high correlation between consecutive steps in the environment
making the neural network more robust.

24 / 31

RESULTS
EMPIRICAL PERFORMANCE

102 103 104 105

Episode (log-scaled)

-20

-15

-10

-5

0

5

R
ew

ar
ds

Empirically trained agent

Delta-hedge

Figure. The performance (rewards) of empirically trained agent against the validation data over the episodes
with ξ = 1. The performance is compared against the classic Black-Scholes delta hedging strategy over. The
performance is plotted against the log-scaled episodes.

25 / 31

RESULTS
EMPIRICAL PERFORMANCE

Table. Empirical performance of DRL agents. The hedge period is 5 days. Hedge is rebalanced seven times in
a day. Results are reported for different levels of the risk-return tradeoff parameter ξ. The reported results on
P&L and costs are scaled by the underlying price at the beginning of the periods.

Mean Std Mean episode
episode P&L episode P&L transaction costs Rewards

Panel A: ξ = 1
Black-Scholes Delta Hedging -0.0195 % 0.1515 % -0.0076 % 4.204
Sim-to-Real DRL Agent trained with Heston model -0.0095 % 0.1502 % -0.0068 % 4.375
DRL Agent trained with empirical data -0.0123 % 0.1415 % -0.0072 % 4.466

Panel B: ξ = 2
Black-Scholes Delta Hedging -0.0195 % 0.1515 % -0.0076 % -1.896
Sim-to-Real DRL Agent trained with Heston model -0.0140 % 0.1483 % -0.0072 % -1.423
DRL Agent trained with empirical data -0.0112 % 0.1378 % -0.0071 % -1.361

Panel C: ξ = 3
Black-Scholes Delta Hedging -0.0195 % 0.1515 % -0.0076 % -7.997
Sim-to-Real DRL Agent trained with Heston model -0.0122 % 0.1499 % -0.0075 % -7.386
DRL Agent trained with empirical data -0.0141 % 0.1402 % -0.0072 % -7.272

26 / 31

RESULTS
EMPIRICAL PERFORMANCE

Main findings:
▶ Empirically trained agent shows superior performance

• The empirically trained DRL agent outperforms not only the classic Black-Scholes delta
hedging, but also the DRL agent trained by synthetic data generated by the calibrated
Heston model.
• The result is robust with all the values of ξ ∈ {1, 2, 3} (risk-return tradeoff).
• This implies that DRL can capture the dynamics of S&P 500 from the actual intra-day

data and to self-learn how to hedge actual options efficiently without the prior
specification of the underlying volatility or jump processes.

▶ The DRL agent trained with the synthetic Heston data yields always yields higher returns
compared to the classic Black-Scholes delta hedging.
• This is a very encouraging result, because it suggests that practitioners could start to

implement RL-based techniques to transfer the agent’s policy from simulation to real
markets even if there is no sufficient amount of empirical data available to train the
models.
• This finding is consistent with the evidence provided by Giurca and Borovkova (2021),

who conclude that the use of RL is suitable for traders taking real-life hedging decisions
when the agents are trained on synthetic data.

27 / 31

FUTURE RESEARCH

▶ In this study, the hedging period was 60 minutes, but it could be irregular and decided by the
agent itself.

▶ The agent’s decision-making process could be structured in two phases: Initially, a decision is
made on whether the portfolio should be updated; following that, if an update is decided, the
next step involves determining the quantity (and if it buy or sell transaction).

▶ In addition, the agent could potentially identify mispricing of options and exploit an arbitrage:
• The agent monitors mispricing: Buy options in response to underpricing and sell options

in response to overpricing.
• Once buy/sell decisions are made, the agent dynamically hedges the option position,

utilizing insights from the current research.
• The agent has the flexibility to hold the option position until maturity or unwind it when

profitable mispricing is detected again, but in the opposite direction than initially.
• Specifically, the agent sells options held in a long position upon observing transient

overpricing and closes a short position when underpricing is identified.

28 / 31

Thank you!

29 / 31

REFERENCES I

Buehler, Hans et al. (2018). “Deep Hedging”. In: Quantitative Finance 19.8, pp. 1271–1291.
Cao, Jay et al. (2021). “Deep hedging of derivatives using reinforcement learning”. In: The
Journal of Financial Data Science 3.1, pp. 10–27.
Du, Jiayi et al. (2020). “Deep Reinforcement Learning for Option Replication and Hedging”.
In: The Journal of Financial Data Science 2.4, pp. 44–57.
Fujimoto, Scott, Herke Hoof, and David Meger (2018). “Addressing function approximation
error in actor-critic methods”. In: International Conference on Machine Learning. PMLR, pp. 1587–1596.
Giurca, Alexandru and Svetlana Borovkova (2021). “Delta Hedging of Derivatives using Deep
Reinforcement Learning”. In: Available at SSRN 3847272.
Halperin, Igor (2019). “The QLBS Q-Learner goes NuQLear: fitted Q iteration, inverse RL, and
option portfolios”. In: Quantitative Finance 19.9, pp. 1543–1553.
— (2020). “Qlbs: Q-learner in the black-scholes (-merton) worlds”. In: The Journal of Derivatives
28.1, pp. 99–122.
Heston, L. Steven (1993). “A Closed-Form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options”. In: The Review of Financial Studies 6.2, pp. 327–343.
Kolm, Petter N and Gordon Ritter (2019). “Dynamic replication and hedging: A reinforcement
learning approach”. In: The Journal of Financial Data Science 1.1, pp. 159–171.

30 / 31

REFERENCES II

Kolm, Petter N and Gordon Ritter (2020). “Modern perspectives on reinforcement learning in
finance”. In: Modern Perspectives on Reinforcement Learning in Finance (September 6, 2019). The Journal of
Machine Learning in Finance 1.1.
Lillicrap, Timothy P et al. (2015). “Continuous control with deep reinforcement learning”. In:
arXiv preprint arXiv:1509.02971.
Mikkilä, Oskari and Juho Kanniainen (2023). “Empirical deep hedging”. In: Quantitative Finance
23.1, pp. 111–122.
Mnih, Volodymyr et al. (2013). “Playing Atari with Deep Reinforcement Learning”. In: CoRR.
URL: http://arxiv.org/abs/1312.5602.
Watkins, Christopher JCH and Peter Dayan (1992). “Q-learning”. In: Machine learning 8.3-4,
pp. 279–292.

31 / 31

http://arxiv.org/abs/1312.5602

	Where I'm from
	Our research: ML & HFT
	Investor Network Research
	Empirical option pricing
	Motivation for Hedging with Reinforcement Learning
	Deep Reinforcement Learning
	Basics
	Reward
	Learning procedure

	Deep Reinforcement Learning for Hedging
	Earlier research
	Reward function
	States
	Settings

	Data
	Results
	Monte Carlo experiments
	Empirical performance

	Future research
	
	References

