

# **Quantum Time Series**

# Gábor Fáth

ELTE RiskLab & Department of Physics of Complex Systems

November 2023

## **Contributors**:

Zoltán Udvarnoki (ELTE)

Miklós Werner (BME, Wigner)

Örs Legeza (Wigner)

## Pricing and risk managing options



Figure 1.1: The S&P volatility surface as of June 20, 2013.

- Options modeled with stochastic volatility models
- Volatility is "rough" (Gatheral 2014)
- E.g.: Rough Fractional Stochastic Volatility (RFSV) model

$$dS_t = \mu_t S_t dt + \sigma_t S_t dZ_t$$
  

$$\sigma_t = \exp(X_t)$$
  

$$dX_t = \alpha (m - X_t) dt + \nu dB_t^H$$
 fOU process

- Fractional Brownian motion (fBm):  $B_t^H$ 
  - H = Hurst exponent
  - Self similarity (mono-fractal property):

 $\{B_H(at), t \in \mathbb{R}\} \stackrel{law}{=} \{a^H B_H(t), t \in \mathbb{R}\}$ 

Definition: **fBm** is a centered Gaussian process with auto-covariance

$$cov(B_H(s), B_H(t)) = \frac{var(B_H(1))}{2} \left( |t|^{2H} + |s|^{2H} - |t-s|^{2H} \right)$$

Integral representations:

• Mandelbrot-Van Ness

$$B_{H}(t) = B_{H}(0) + rac{1}{\Gamma(H+1/2)} \left\{ \int_{-\infty}^{0} \left[ (t-s)^{H-1/2} - (-s)^{H-1/2} 
ight] \, dB(s) + \int_{0}^{t} (t-s)^{H-1/2} \, dB(s) 
ight\}$$

• Molchan-Golosov

$$B_{H}(t) = \int_{0}^{t} K_{H}(t,s) \, dB(s) \qquad \qquad K_{H}(t,s) = rac{(t-s)^{H-rac{1}{2}}}{\Gamma(H+rac{1}{2})} \, _{2}F_{1}\left(H-rac{1}{2};\,rac{1}{2}-H;\,H+rac{1}{2};\,1-rac{t}{s}
ight).$$



## Cholesky:

- Using the known covariance structure of fBm
- Scaling  $O(n^3)$

## Circulant method (Davies-Harte)

- Simulate the process increments first (Fractional Gaussian noise, fGn)
- fBm sample follows from cumulative sum
- Covariance of fGn has "circulant" (Toeplitz) structure
- Can be diagonalized with Fourier transform
- Scaling  $O(n \ln(n))$

## Approximate methods

- Hybrid methods
- Kernel methods

$$\rho(k) = \mathbb{E}[\xi_1 \xi_{k+1}]$$
  
=  $\frac{1}{2n^{2H}} \left( |k+1|^{2H} - 2|k|^{2H} + |k-1|^{2H} \right)$ 

Covariance of the increments

## **Process of increments**

### Increments – Fractional Gaussian noise (fGn):

- Stationary
- Gaussian
- Autocorrelation (colored noise):

$$\rho(k) = \mathbb{E}[\xi_1 \xi_{k+1}]$$
  
=  $\frac{1}{2n^{2H}} \left( |k+1|^{2H} - 2|k|^{2H} + |k-1|^{2H} \right)$ 

• Asymptotically  $\rho(k) \sim 2H(2H-1) k^{2H-2} = \begin{cases} H < \frac{1}{2}: \text{ negative, fast decay, integrable} \\ H = \frac{1}{2}: \text{ zero, iid (White noise)} \\ H > \frac{1}{2}: \text{ positive, slow decay, non-integrable, long memory} \\ \text{Algebraic decay} \\ \text{exponent: } 2H-2 \end{cases}$ 

## Definition: Generalized Bernoulli Process

We will define stationary process,  $\{X_i, i \in \mathbb{N}\}$ , where each  $X_i$  takes one of two possible outcomes, 0 or 1, with  $P(X_i = 1) = p, P(X_i = 0) = 1 - p$ , and

 $cov(X_i, X_j) = c'|i-j|^{2H-2}, i \neq j,$ 

The integrated process is the Fractional Binomial Process

Define  $B_n = \sum_{i=1}^n X_i$ . It follows that  $E(B_n) = np$ , and as  $n \to \infty$ ,

$$Var(B_n) \sim \begin{cases} \left( p(1-p) + \frac{c'}{2H-1} \right) n & H \in (0, 1/2), \\ c'n \ln n & H = 1/2, \\ \frac{c'}{2H-1} |n|^{2H}, & H \in (1/2, 1). \end{cases}$$

© ELTE RISKLAB

© Open Access Published by De Gruyter Open Access March 1, 2021 Generalized Bernoulli process with longrange dependence and fractional binomial distribution

#### Jeonghwa Lee 🖂

From the journal Dependence Modeling https://doi.org/10.1515/demo-2021-0100

8

The **spin-1/2 XXZ spin chain** model is an example of a strongly correlated 1D quantum lattice system. The Hamiltonian is:

$$H = \sum_{j=1}^{N} \frac{1}{2} \left( S_{j}^{+} S_{j+1}^{-} + S_{j}^{-} S_{j+1}^{+} \right) + \Delta S_{j}^{z} S_{j+1}^{z}$$

Here  $S_i^+$ ,  $S_i^-$  and  $S_i^z$  are the spin operators at site *j*, and  $\Delta$  is the anisotropy parameter.

The phase diagram of the XXZ model exhibits different phases based on the value of  $\Delta$ :

- **Isotropic AF** ( $\Delta = 1$ ): Gapless. Critical behavior with algebraic decay of correlations
- Gapless Phases ( $-1 < \Delta < 1$ ): Gapless. Critical behavior with different correlation exponents (Luttinger liquid)
- Antiferromagnetic Phase ( $\Delta < 1$ ): Gapped. Long-range order with antiferromagnetic correlations (Néel order)
- **Ferromagnetic Phase (** $\Delta > 1$ **):** Long-range order with ferromagnetic correlations

## **Gapless phase**

Asymptotics of correlation functions ( $\Delta$ -dependent exponents):

$$C^{x}(n) = (-)^{n} \frac{A}{4n^{\eta}} \left( 1 - \frac{B}{n^{4/\eta - 4}} \right) - \frac{\tilde{A}}{4n^{\eta + 1/\eta}} \left( 1 + \frac{\tilde{B}}{n^{2/\eta - 2}} \right) + \dots$$
$$C^{z}(n) = -\frac{1}{4\pi^{2}\eta} \frac{1}{n^{2}} \left( 1 + \frac{\tilde{B}_{z}}{n^{4/\eta - 4}} \frac{4 - 3\eta}{2 - 2\eta} \right) + (-)^{n} \frac{A_{z}}{4n^{1/\eta}} \left( 1 - \frac{B_{z}}{n^{2/\eta - 2}} \right) + \dots$$

$$\Delta = -\cos(\pi\eta), \qquad 0 < \eta < 1$$



Long-distance asymptotics of spin-spin correlation functions for the XXZ spin chain

<u>Sergei Lukyanov</u> <sup>a b</sup>, <u>Véronique Terras</u> <sup>a c</sup> 🖂

|                         | Classical time series                  | Quantum chain                |
|-------------------------|----------------------------------------|------------------------------|
| Integrated process      | Fractional Binomial Process            | Spin domain magnetization    |
| Increment process       | Generalized Bernoulli Process          | Spin-1/2 quantum chain       |
| Correlations            | Power law (in time)                    | Power law (in space)         |
| Fractal characteristics | Hurst exponent                         | Correlation exponents        |
| Probability measure     | Bernoulli probs conditional on history | Quantum ground state implied |
| Sample                  | Process trajectory                     | Spin chain configuration     |
| Sampling algorithm      | Cholesky, Circulant, Kernel            | Quantum sampling from MPS    |



A **Matrix product state** (**MPS**) is a quantum state of many particles (in N sites), written in the following form:

$$|\Psi
angle = \sum_{\{s\}} {
m Tr} \Big[ A_1^{(s_1)} A_2^{(s_2)} \cdots A_N^{(s_N)} \Big] |s_1 s_2 \dots s_N
angle,$$

where  $A_i^{(s_i)}$  are complex, square matrices of order  $\chi$  (this dimension is called local dimension). Indices  $s_i$  go over states in the computational basis. For qubits, it is  $s_i \in \{0, 1\}$ . For qudits (d-level systems), it is  $s_i \in \{0, 1, \dots, d-1\}$ .

## **MPS Sampling**

## Perfect sampling with unitary tensor networks

Andrew J. Ferris and Guifre Vidal Phys. Rev. B **85**, 165146 – Published 30 April 2012



1. Draw 1st spin:

$$\rho_{1} = \operatorname{Tr}_{2...N} |\Psi\rangle \langle \Psi|$$
$$P(s_{1}) = \langle s_{1} | \rho_{1} | s_{1} \rangle$$
$$\mathsf{Draw} \ s_{1}$$

2. Draw 2nd spin (conditioned on  $s_1$ ):

$$\rho_{2}(s_{1}) = \frac{1}{P(s_{1})} \operatorname{Tr}_{3...N} \langle s_{1} | \Psi \rangle \langle \Psi | s_{1} \rangle$$
$$P(s_{2} | s_{1}) = \langle s_{2} | \rho_{2}(s_{1}) | s_{2} \rangle$$
$$\operatorname{Draw} s_{2}$$

3. Draw 3rd spin (conditioned on  $s_1, s_2$ ):

$$\rho_3(s_1, s_2) = \frac{1}{P(s_1, s_2)} \operatorname{Tr}_{4\dots N} \langle s_1, s_2 | \Psi \rangle \langle \Psi | s_1, s_2 \rangle$$

etc...



# **MPS** sampling

This can be done effectively in the MPS formalism:

$$\circ = M = A^{\uparrow}|\uparrow\rangle + A^{\downarrow}|\downarrow\rangle$$

$$i = [] = A^{\uparrow} \circ A^{\uparrow}$$

$$i = [] = A^{\downarrow} \circ A^{\downarrow}$$

$$(A^{\uparrow} \circ A^{\uparrow} + A^{\downarrow} \circ A^{\downarrow}) [] = \lambda_{+}[]$$

$$\circ \quad 2 \cdot \chi \cdot \chi$$

$$j = \chi^{2} \cdot \chi^{2}$$

$$j = \chi^{2} \cdot \chi^{2}$$

$$P(\uparrow |history) = \frac{\rho_{\uparrow\uparrow}}{\rho_{\uparrow\uparrow} + \rho_{\downarrow\downarrow}}$$

$$P(\downarrow |history) = \frac{\rho_{\downarrow\downarrow}}{\rho_{\uparrow\uparrow} + \rho_{\downarrow\downarrow}}$$

MPS is a variational Ansatz, it minimizes the energy for a suitable *M*.



- H: Hamiltonian
- M: MPS tensor
- $O = M x M^*$  transfer matrix
- L: Left eigenvector of O
- R: Right eigenvector of O
- $\lambda_+$ : Leading eigenvalue

Density Matrix Renormalization Group (DMRG)

Alternatively:

- Convex optimization problem for the *M* tensor in a  $2 \cdot \chi \cdot \chi$  dimensional space
- Gradient descent can be applied on a platform where Automatic Differentiation is implemented (e.g. TensorFlow)





# Thank you