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We wish to minimize F(θ ) := E[ f (θ , X )] where F : Rd → R+,
X random variable.
H(θ , x) := ∂θ f (θ , x), let X i be stationary with law equal to
X , i ∈ N.
Let us try the following alogorithm:

θ̂k+1 := θ̂k − akH(θ̂k, Xk+1).

Fixed gain: ak := λ or decreasing gain, e.g. ak = 1/k is
typical.
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We wish to minimize

E|θ T Zn − Yn|2 + g(θ )

in θ ∈ Rd where (Zn, Yn)n∈Z ∈ Rd+1 is a stationary process.
The function g is to enforce regularization.
This regression problem is omnipresent. The data sequence
has no reason to be i.i.d. in general.
Markov property may hold but long memory may also kick in
(econometric time series, telecommunication traffic).
Solution: stochastic gradient (Langevin) algorithm. Not
necessarily convex functionals.
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If f is not differentiable or the derivative is difficult to
calculate then rather

θ̃k+1 := θ̃k − ak

f (θ̃k + ck, Xk+1)− f (θ̃k − ck, X ′
k+1)

2ck

.

Use of random directions: SPSA (Spall, L. Gerencsér)
Typical: ak = 1/k, ck = 1/ 6p

k.
Let θ ∗ be the (unique) minimizer.
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Under weak conditions (stability, Lipschitz-continuity, mixing
condition):

E|θ̂k − θ∗| ≤
Cp
k

.

In the Kiefer-Wolfowitz case scantier literature:

E|θ̃k − θ∗| ≤
C

3p
k

.

When ak = λ fix:

E|θ̂k − θ∗| ≤ C
p

λ.
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Langevin equation:

d Lt = −h(Lt) d t + dBt ,

where h=∇F ; its stationary law:

µ∗ ∼ e−F(u) du.

Euler-approximation:

θ̄λ
k+1 = θ̄

λ
k
−λh(θ̄λ

k
) +
Æ

λ/βξk+1,

where ξk Gauss, i.i.d.
For small λ and large k this approximates µ∗ well.
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The solution of the Langevin equation tends to the stationary
law at an exponential speed.
The error caused by λ is generically of the order

p
λ. Under

stronger (convexity) assumption better estimates hold true.
Total variation norm is used:

||µ− ν||T V = sup
|φ|≤1

�

�

�

�

∫

Rd

φ(u)µ(du)−
∫

Rd

φ(u)ν(du)

�

�

�

�

,

µ,ν ∈ P (Rd).
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θλ
k+1 = θ

λ
k
−λH(θλ

k
, Xk+1) +
Æ

λ/βξk+1,

where h(θ ) = E[H(θ , X0)], β > 0: inverse temperature. We
will let β →∞, λ→ 0, k→∞.
Then the method samples

µ∗ ∼ e−βF(u) du

which, for β large, means finding the minimum.
Xk: observed data or random sample from huge dataset.



Convergence analysis

Adaptive estimates

Sampling based on the
Langevin equation

Stochastic gradient
Langevin algorithm

Convergence analysis

Wasserstein metric

Known results

Dissipativity

New results I

New results II
Markov chains in
random environments

Price prediction

Non-continuous case

12 / 25



Wasserstein metric

Adaptive estimates

Sampling based on the
Langevin equation

Stochastic gradient
Langevin algorithm

Convergence analysis

Wasserstein metric

Known results

Dissipativity

New results I

New results II
Markov chains in
random environments

Price prediction

Non-continuous case

13 / 25

Let µ,ν ∈ P (Rd), C (µ,ν) the set of all couplings.

W̃p(µ,ν) :=

�

inf
π∈C (µ,ν)

∫

R2d

|x − y|pπ(d x , d y)

�1/p

, p ≥ 1

W1(µ,ν) := inf
π∈C (µ,ν)

∫

R2d

max{|x − y|, 1}π(d x , d y)

≤ min{C ||µ− ν||T V , W̃1(µ,ν)}.
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M. Raginsky, A. Rakhlin, M. Telgarsky: Non-convex learning
via stochastic gradient Langevin dynamics: a non-asymptotic
analysis, 2017.
Theorem.

W̃2(Law(θλ
k
),µ∗)≤ ǫ

provided that

λ ≤ c1(ǫ/ ln(1/ǫ))4, k ≥ c2
ln5(1/ǫ)

ǫ4
.

Upper estimate W̃2(Law(θλ
k
),µ∗) depends on k: e−cλk+ kλ5/4.
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There are functions ∆, b such that

〈H(θ , x),θ 〉 ≥∆(x)|θ |2 − b(x).

Expresses a certain degree of pulling effect towards the
“centre”.
Mixing conditions about X t .
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Theorem. If ∆, b are constants,

W̃1(Law(θλ
k
),µ∗)≤ ǫ

provided that

λ ≤ c1ǫ
2, k ≥ c2

ln(1/ǫ)

ǫ2
.

Upper estimate independent of k: e−cλk +
p
λ.
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Theorem. Law(θλ
k
) converges to a limit µ∗ in total variation

as k→∞.
Two alternative sets of conditions:

1. E[∆(X0)]> 0, b constant, H at most linear, X0 bounded,
satisfies large deviation-type estimates.

2. ∆ constant, b, H polynomial in x (H at most linear in θ).
Boundedness relaxed to a moment condition.
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Polish spaces X ,Y with Borel sigma-fields B,A Let
Q : Y ×X ×B→ [0, 1] be a family of probabilistic kernels
parametrized by y ∈ Y , i.e. for all A∈B, Q(·, ·, A) is
A⊗B-measurable and for all y ∈ Y , x ∈ X , A→Q(y, x , A) is
a probability on B.
Let X t , t ∈ N be a X -valued stochastic process such that

P(X t+1 ∈ A|Ft) =Q(Yt , X t , A) P-a.s., t ≥ 0, (1)

where the filtration is defined by

Ft := σ(Yj, j ∈ Z; X j , 0≤ j ≤ t), t ≥ 0.

This is a Markov chain in a random environment.
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Let us consider the problem of online nonlinear prediction of
Zn as a function of the p previous observations
Zn−1, . . . , Zn−p. fθ : Rp×m→ Rm, θ ∈ Rd is a parametric
family of (non-linear) twice continuously differentiable
functions, such as the output of a neural network. We seek to
minimize the regularized mean-square error, that is,

U(θ ) = E[|Zp − fθ (Zp−1, . . . , Z0)|2] + c|θ |2 (2)

for some c > 0. Under technical conditions, SGLD applies.
Online price prediction: 27 methods.
Lago, J., De Ridder, F. and De Schutter, B.: Forecasting spot
electricity prices: deep learning approaches and empirical
comparison of traditional algorithms", Applied Energy,
221:386–405, 2018.
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In general F(θ ) = E[ f (θ , X )] for some random variable X .
Often f is not continuous, hence h(θ ) =∇F(θ ) does not
admit an obvious random representation.
For instance: f can be an indicator function: minimizing the
probability of an event.
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An agent decides in which stock (s)he invests his/her money
for the next trading period.
Changes in the prices: Xk, Yk, k ∈ N. The investor maximizes

EU(1Xk−1>θ1,Yk−1≤θ2
Xk + 1Xk−1≤θ1,Yk−1>θ2

Yk)

in θ1,θ2.
U: functional expressing relation to risk.
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Inspired by Kiefer-Wolfowitz algorithm:

θλ
k+1 = θ

λ
k
−λ

f (θλ
k
+ ck, Xk)− f (θλ

k
− ck, X ′

k
)

2ck

+
Æ

λ/βξk+1.

Let ak := 1/k and ck = k−γ for some γ > 0.

θ̃k+1 := θ̃k − ak

f (θ̃k + ck, Xk+1)− f (θ̃k − ck, X ′
k+1)

2ck

.
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Under suitable (complicated) assumptions:

E|θ̃k − θ∗| ≤
C

k1/5
,

when γ= 1/5 is chosen.
Continuity sets must be polyhedral, Lipschitz-continuity in
the average, smoothness assumptions, stability, dissipativity,
global parameter set.
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THANK YOU FOR YOUR ATTENTION!
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