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What is market impact?

Market impact refers to the ”correlation” between an incoming order (to buy or to sell) and

the contemporaneous and subsequent price change.

Market impact induces extra costs. Indeed, large volumes must typically be fragmented and

executed incrementally (Kyle 1985). The total cost of this large trade is quickly dominated,

as sizes become large, by the average price impact.

Monitoring and controlling impact has therefore become one of the most active domains of

research in quantitative finance since the mid-nineties.

Volume dependence of impact (By how much do larger trades impact prices more than

smaller trades?), and temporal behavior of impact (is the impact of a trade immediate and

permanent, or does the impact decay after one stops trading?).

Impact is a dynamical quantity since it depends on the available liquidity, but also on the

recent history of my trades.
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Market impact of metaorders

We are not interested here in market impact of individual market events (e.g. a market order

or a limit order), but rather to a metaorder, i.e. a sequence of orders and trades following a

single trading decision.

This is the main quantity of interest in reality.

Public market data do not allow to identify metaorders.

The empirical analysis of market impact of metaorders is a guide to construct realistic

models of market impact on which optimal execution problem can be built.

I first review some old and new statistical regularities of market impact of metaorders and

then I discuss the optimal execution problem.

Fabrizio Lillo (Unibo) November 26, 2021 3 / 49



A very recent review
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Definitions and relation with cost

The main quantity of interest is the metaorder impact

I(Q,T ) ≡ E[ε∆ log p|Q,T ]

where

∆ log p is the logprice change between the start and the end of the metaorder,

Q is the size of the metaorder (in shares),

T is the metaorder duration (in seconds or in volume time)

ε is the sign of the metaorder (i.e ε = +1 for a buy and ε = −1 for a sell metaorder).

I(Q,T ) is directly related to the average impact cost of a metaorder execution.The expected

implementation shortfall cost, i.e. the difference between the expected cost and the theoretical

cost obtained by marking to market the trade with the initial price, is

Cost =

∫ T

0
ẋtI(xt , t) dt

where ẋt is the time derivative of the asset position xt at time t.
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The square-root impact law

Remarkably, many empirical studies seem to agree on the validity of the square-root impact

law, obtained when conditioning on the volume fraction of the metaorder.

Setting φ = Q/Vd with σd and Vd daily volatility and volume

I(Q,T ) ≈ Yσd

√
φ

where Y ' 1 is a numerical constant. This relation has been empirically shown also for

disparate asset classes as options and Bitcoin.

This empirical relation is at first sight surprising: it indicates that the style of trading (for

example using limit orders or market orders), the duration T of the execution, the trading

speed (i.e. the number of shares traded per unit time), etc, are not relevant!

These observations indicate that there must be some limitations to the validity of this ‘law’.

For example, the prefactor Y might depend on the trading algorithm.
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The Ancerno database

ANcerno Ltd (formerly the Abel Noser Corporation) is a widely recognized consulting firm

that works with institutional investors to monitor their equity trading costs.

Each metaorder is characterized by a broker and an investor label, a stock symbol, the total

volume |Q| (in number of shares) and the times at the start and at the end of its execution

with sign ε = ±1.

Data from ∼ 3000 US equities in 2007-2010

Around 8 million metaorders distributed quite uniformly in time and across market

capitalizations representing around 5-10% of the total market volume.

No information on the execution style or trading profile during execution.
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Empirical results1
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f(φ) = Y φδ

g(φ) = a log10(1 + bφ)

Ŷ =0.15±0.01 δ̂ =0.47±0.02 ERMS =6.70

â =0.028±0.001 b̂ =465±33 ERMS =2.80

Market impact of metaorders under different conditioning: φ = Q/Vd , D is the (volume time)

duration of the metaorder, and π = φ/D is the participation rate.

1E. Zarinelli, M.Treccani, J. D. Farmer, F. Lillo, Beyond the square root: Evidence for logarithmic dependence of market

impact on size and participation rate, Market Microstructure and Liquidity (2015)
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By considering I(Q,T ) as a function only of φ = Q/V , it is clear that a logarithmic

function fits the data better than a power law function; this indicates a linear behavior of

impact for small volumes and an extra concavity (likely due to a selection bias) for very large

volumes. Below we will present two possible explanations for the linear behavior of the

impact for small φ.

By considering I(Q,T ) as a function of both variables, Zarinelli et al. introduces the market

impact surface and showed that a double logarithmic function outperforms the power law

form of Eq. 1.

Considering a power law dependence on T and the participation rate η, Zarinelli et al.

investigates the regression

I(Q,T ) = A T δT ηδη · noise (1)

The fit gives δT = 0.54± 0.01 and δη = 0.52± 0.01, and A = 0.207± 0.005. The fact that

both exponents are very close to 1/2 indicates that I(Q,T ) ≈ √Tη =
√
φ, even when

considering separately the effect of participation rate and duration.
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Important comments

Measuring the impact implies measuring the drift, thus the inclusion of the sign ε in the

definition is critical. By neglecting the sign, for example taking the absolute value of the

impact, one measures the correlation between volume and (a proxy of) volatility.

Fluctuations are very large. What is plotted in the previous figure is the average market

impact across a very large number of metaorders.

The error bars are standard errors, which are small because of the sample size. However the

average impact is always significantly different from zero.

Conditioning on the metaorder is critical: other types of market impact are obtained

conditioning on the (anonymous) flow of orders in the market. Obviously in these latter

conditions one can obtain much higher R2 (even 1, since the order flow completely

determines price).
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Impact is not just volatility2

The square root impact law is not related to the fact that volatility scales as the square root of

(execution) time, which, for a fixed participation rate, is proportional to metaorder size.

Market impact curves of metaorders with φ & 5 · 10−4 (roughly 80% of those in the ANcerno

database) are independent on T and consistent with a square root dependence on φ.

Impact of the remaining small metaorders are better described by a linear relation.

The variance of impact depends linearly on T , as expected by the diffusivity of price, and this

price uncertainty largely exceeds the average reaction impact contribution (which in turn explains

why the R2 in the market impact estimation is typically very small).

2Bucci et al. Impact is not just volatility. Quantitative Finance, 19(11):1763-1766 (2019)
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Explaining the impact law: the Locally Linear Order Book (LLOB)3

Limit order book model: ϕ(x , t) is the density of orders at price x at time t

∂tϕA(x , t) = D∂xxϕA(x , t)− νϕA(x , t) + λΘ(xt − x)− RA,B (x , t)

∂tϕB (x , t) = D∂xxϕB (x , t)− νϕB (x , t) + λΘ(x − xt )− RA,B (x , t)

where RA,B (x , t) = κϕA(x , t)ϕB (x , t).

Price equation for the transaction price xt

ϕA(xt , t) = ϕB (xt , t)

3Donier et al. (2015)
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Stationary solution and metaorder solution

The stationary solution in the price reference frame is linear when x is small, i.e. ϕst (x) = Lx

where L = λ/
√
Dν is a measure of liquidity.

The total transaction rate J is the flux of orders through the origin, i.e. J ≡ D∂xϕst |x=0 = DL.

In the limit of a slow order book (i.e. νT � 1), the price trajectory pm(t) during the execution of

the metaorder with trading velocity m = Q/T is given by the self-consistent expression

pm(t) =p0(t) + y(t), (2)

y(t) =
m

L

∫ t

0

ds√
4πD(t − s)

exp

[
− (y(t)− y(s))2

4D(t − s)

]
, (3)

where p0(t) is the price trajectory in the absence of the metaorder in t ∈ [0,T ].
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Impact of a metaorder according to LLOB

Price impact of a metaorder is I(Q,T ) = y(T ) and equal to

I(Q,T ) =

√
DQ

J
F(η) , with η ≡ Q

JT
, (4)

where η is the participation rate

F(η) =

{ √
η/π for η � 1√

2 for η � 1

I(Q,T ) is linear in Q for small Q at fixed T , and crosses over to a square-root for large Q. In

the square-root regime, impact is predicted to be independent of the execution time T , as

observed empirically
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LLOB theory vs Empirical Data

Data from ANcerno database: 8 million metaorders in US equity markets (2007-2010)

Good qualitative agreement but not quantitative...

Intuition: The total market turnover J is actually dominated by HFTs/market makers, while

resistance to slow metaorders can only be provided by slow participants

Solution: Introduce the LLOB mode with two time-scales of market participants, i.e. fast and

slow.
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Market impact with fast and slow traders4

Two contributions to the order flow, with νs � νf :

∂tφs (x , t) = Ds∂xxϕs (x , t)− νsϕs (x , t) + λs Θ(x − xt ) + ms,tδ(x − xt )

∂tφf (x , t) = Df ∂xxϕf (x , t)− νf ϕf (x , t) + λf Θ(x − xt ) + mf ,tδ(x − xt )

and mf ,t + ms,t = m0. The model can be exactly solved for T > T † where

T † = ν−1
f η∗−2Ds/Df

η∗ = Js/Jf

and in this case

I(Q,T ) =

√
Ds Q

Js
F
(
η

η∗

)
Empirically we estimate T † ∼ 45 seconds (for νf = 1 second). Since the median execution time

of the metaorders in our sample is 35 minutes, it follows that T > T †.

4Benzaquen and Bouchaud (2018)
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Empirical results
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Trading is crowded....
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Co-impact: the role of investors crowding

Empirical data from Ancerno database
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〈ρ(φ)〉 = 0.21
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〈ρ(φ)〉 = −0.07
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Co-impact: the role of investors crowding

What is the role of the other metaorders being executed in the same day? Data shows5 that the

market reacts to the aggregated order flow

I(φ1, ...., φN ) ≡ E[scl − sop |φ1, ...., φN ] = Y sign(Φ)
√
|Φ|

where Φ = φ1 + ...+ φN

This is somewhat puzzling since, conditioning on one metaorder φ while the rest of the market

trades φm

I (φ+ φm) = Y ×
√
|φ+ φm|. (5)

This tends to Y
√
|φm| when φ→ 0, behaves linearly when |φ| � |φm| and as a square root when

|φ| � |φm|.

5F. Bucci, I. Mastromatteo, Z. Eisler, F. Lillo, J.-P. Bouchaud, C.-A. Lehalle, Co-impact: Crowding effects in institutional

trading activity, Quantitative Finance (2020)
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Suppose the manager k wants to execute a volume fraction φk = φ and there are N metaorders

today. Since the other N − 1 metaorders are not known, her best estimate of the average impact

given N is given by conditional expectation

IN (φ) = E[I(Φ)|φk = φ] = E
[
I
(
φk +

N∑
i 6=k

φi

)∣∣∣φk = φ
]

(6)

over the conditional distribution P(ϕN |φk = φ) of the metaorders.

Since the number of metaorders is in general not known either, the expected individual market

impact is given by

I (φ) = Y ×
∑

N

p(N)

∫
dφ1 . . . dφN P(ϕN |φk = φ)sign

(
φk +

N∑
i 6=k

φi

)(
φk +

N∑
i 6=k

φi

)1/2
(7)

In order to compute IN (φ) and I (φ) we need to know the joint probability density function

P(ϕN ) := P(φ1, . . . , φN )
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Example: P(ϕN) is a multivariate Gaussian

For independent Gaussian metaorders with with zero mean and variance Σ2
N

For small metaorders the noise term dominates, leading to

IN (φ) ∝ φ when φ� φ
∗
N := ΣN

√
N − 1.

For large metaorders the N − 1 other simultaneous metaorders can be neglected and thus

IN (φ) ∝
√
φ when φ� φ

∗
N .

For Gaussian metaorders with zero mean, variance Σ2
N , and correlation ρN , the average

impact IN (φ) can be obtained by making the substitution

φ→ φ(1 + (N − 1)ρN ). (8)

in the expression of IN (φ) for independent Gaussians. This is because (N − 1)ρNφ is the

effective number of additional volume-weighted metaorders correlated to the original one.
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From linear to square root

Left. full analytical solutions for different N, but fixed ΣN = Σ.

However, interestingly, one expects ΣN to decrease with N, simply because as the number of

metaorders increases, the volume fraction represented by each of them must decrease. (Inset

right)
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A calibrated model

Empirically metaorder sizes are almost independent, while signs are correlated. Moreover

there is not a huge disparity between metaorder sizes.

We thus assume that the joint distribution of the φi ’s can be written as

P(ϕN ) = PN (ε)
N∏

i=1

p(|φi |), (9)

We further assume that there is a unique common factor determining the sign of the

metaorders:

P(εi = +1|ε̃) =
1

2
(1 + γεε̃); P(εi = −1|ε̃) =

1

2
(1− γεε̃), (10)

where ε̃ is the hidden sign factor, such that P(ε̃ = ±1) = 1/2, and γε is the sign correlation

between each sign εi and the hidden sign factor ε̃.

Fabrizio Lillo (Unibo) November 26, 2021 25 / 49



Comparison with data

Comparison between calibrated sign-correlated model (colored lines) and empirical data (circles):

The sample is split into two sub-samples depending a realized sign correlation

ρ(ε) :=
2

N(N − 1)

∑
1≤i<j≤N

εi εj
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The price dynamics during the metaorder execution
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Average price trajectory during the execution of a metaorder6. v is volume time, D is the

metaorder duration, and π the participation rate.

The price starts reverting before the end of the metaorder execution

6E. Zarinelli, M.Treccani, J. D. Farmer, F. Lillo, Beyond the square root: Evidence for logarithmic dependence of market

impact on size and participation rate, Market Microstructure and Liquidity (2015)
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The price dynamics after the metaorder execution
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Average price trajectory after the execution of a metaorder7. D is the metaorder duration and π

the participation rate. z is time rescaled to the metaorder duration (thus the metaorder ends at

z = 1).

Price reverts significantly after the end of the metaorder execution

7E. Zarinelli, M.Treccani, J. D. Farmer, F. Lillo, Beyond the square root: Evidence for logarithmic dependence of market

impact on size and participation rate, Market Microstructure and Liquidity (2015)

Fabrizio Lillo (Unibo) November 26, 2021 28 / 49



Which model can explain these phenomena?

Under Almgren-Chriss type model

St = S0 + k

∫ t

0
ẋs ds + σ

∫ t

0
dWs

where ẋt dt > 0 is the amount of shares purchased by the considered execution in [t, t + dt], the

optimal solution for a metaorder of size x0 of an agent with risk aversion λ is

ẋt = x0
sinh b(T − t)

sinh bT
b =

√
λσ2/k
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The Transient Impact Model (TIM)

Considering a time interval [0,T ], the price St at time t is

St = S0 +

∫ t

0
f (ẋs )G(t − s)ds +

∫ t

0
σs dWs (11)

where ẋt dt > 0 is the amount of shares purchased by the considered execution in [t, t + dt],

Ws is a Wiener process in a suitable probability space, and volatility σs is a deterministic

function.

The function f describes the instantaneous impact of the executed trades on price and in the

linear case, it is

f (ẋt ) = kẋt (12)

The function G(t), termed the kernel or propagator of the model, describes the delayed

effect of trading on price and G(t − s) characterizes how a trade at time s affects the price

at time t

When impact is small, the price dynamics of the LLOB coincides with that of the TIM with

f (z) = kz and G(t) = 1/
√

t.
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The kernel: empirical evidences

Empirical evidences8 obtained from transaction data points unambiguously towards a power law

kernel (Bouchaud et al, 2004)

G(t) = t−κ κ < 1

100 101 102 103

`

10−1

100

G
(`

)
(b

p)

AAPL

Typical values of κ are in the interval [0.2, 0.5].

8From D. E. Taranto, G. Bormetti, J.-P. Bouchaud, F. Lillo, B. Toth, Quantitative Finance 2018.
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Different benchmarks for optimal execution

Implementation Shortfall (IS). Fix the execution time interval [0,T ] and minimize∫ T

0
St dxt − x0S0

or a risk adjusted version of it. Typically used to benefit from a price opportunity.

Target Close (TC). Fix the execution time interval [0,T ] and minimize∫ T

0
St dxt − x0Sclose

Used mainly by fund managers whose Net Asset Value is computed using closing price.

Volume-Weighted Average Price (VWAP) orders. Fix the execution time interval [0,T ]. Let

Vt dt the volume traded by the market in [t, t + dt]. Minimize∫ T

0
St dxt − x0VWAPT

0 with VWAPT
0 =

∫ T
0 St Vt dt∫ T

0 Vt dt

Benchmark for traders who buy or sell shares in line with their global investment strategies or

to hedge a risky position.
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Problem setting: the generalized VWAP

What is the optimal execution under general benchmarks if price follows the TIM?

A broker wants to sell a quantity of x0 > 0 shares in a time window [0,T ]: the trading

interval

The broker is benchmarked against the market Volume Weighted Average Price in a time

window [T1,T2] ⊆ [0,T ], termed the benchmark interval
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Problem setting: the generalized VWAP

Special cases:

Implementation Shortfall with T1 = T2 = 0−

Target Close with T1 = T2 = T +

Standard VWAP with T1 = 0, T2 = T

General case: Industry point in time benchmarks are being replaced with interval benchmarks

Let Vt dt be the deterministic market volume traded in [t, t + dt]. The VWAP benchmark is given

by

VWAPT2
T1

=

∫ T2
T1

St Vt dt∫ T
0 Vt dt

=

∫ T

0
ηt St dt (13)

where

ηt =
Vt∫ T2

T1
Vs ds

It∈[T1,T2] (14)
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Problem setting: the generalized VWAP

The objective function of the broker is the difference between the cash she is able to obtain

from the proceeds in the trading interval and the cash she will give back to the client, equal

to the random variable x0VWAPT2
T1

.

Let us define the cash process

dXt = ẋt St dt X0 = 0. (15)

Assuming a CARA risk averse agent, the objective function for a strategy x ≡ {xt}T
0 is

U[x] = E0[− exp(−2γ(XT − x0VWAPT2
T1

))] (16)

where 2γ is the risk aversion parameter.
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Transforming the optimization

Proposition

Under linear impact, f (z) = −kz with k > 0, the maximization of the utility function (16) is

equivalent to the minimization of the functional

C [x] ≡ 1

2

∫ T

0

∫ T

0
ẋt ẋs G(|t − s|)ds dt − x0

∫ T

0
ηt dt

∫ t

0
G(t − s)ẋs ds (17)

+
γ

k

∫ T

0

∫ T

0
dt dt′(ẋt − x0ηt )(ẋt′ − x0ηt′ )

∫ t∧t′

0
σ2

s ds

Proposition

The strategy {x∗t }T
0 minimizing the functional (17) with γ = 0 satisfies the integral equation∫ T

0
G(|t − s|)dx∗s − x0

∫ T

t
ηs G(s − t)ds = λ (18)

where λ is a constant set by the normalization of the total volume traded∫ T

0
dx∗s = x0 (19)
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Special cases

Implementation Shortfall. When T1 = T2 = 0, it is ηt = 2δ(t) thus the integral equation

becomes ∫ T

0
G(|t − s|)dx∗s = λ (20)

as derived by Gatheral, Schied, & Slynko (Mathematical Finance 2012).

Target Close. When T1 = T2 = T the integral equation becomes∫ T

0
G(|t − s|)dx∗s = λ+ x0G(T − t)

with solution ẋ∗s = w
(1)
s + x0δ(T − t) (the sum of x0/2 shares traded as in the IS case and

the remaining x0/2 shares traded at t = T ).
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Standard VWAP with power law kernel

We consider here the case when the benchmark VWAP interval [T1,T2] coincides with the

trading interval [0,T ] and ηt = 1/T , ∀t ∈ [0,T ], i.e. the market volume is constant in the

interval.

Consistently with data we choose a power law kernel G(t) = t−κ with κ < 1

The optimal schedule is

ẋt =
x0

T

2κ−2√π csc(κπ
2

)

Γ
(
1− κ

2

)
Γ
(

1+κ
2

) [κ+ 2F1

(
1,−1 + κ, 1+κ

2
; t

T

)][
t
T

(
1− t

T

)](1−κ)/2
(21)
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Figure: Optimal trading schedule for a VWAP of x0 = 1 with benchmark interval coincident with the trading

interval [0, 1]. The price is without drift and the broker is risk neutral. Four schedules for different values of the

exponent κ of the kernel.
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Comments

In a VWAP sell execution it is optimal to buy toward the end of the trading period and thus

that this strategy allows for transaction triggered price manipulation even when G is convex.

When κ is small, the region of negative trading velocity becomes larger.

In the limit κ→ 1, the optimal schedule is vt = x0/T , i.e. to trade at constant speed.

For comparison, in the Almgren-Chriss framework, ẋt is a straight line with negative slope

depending on the temporary impact (Gueant and Royer, SIAM Journal of Financial

Mathematics, 2014).

With exponential kernel G(t) = e−ρt the optimal strategy is

vt =
x0

ρT (2 + ρT )
[2(1 + ρT )δ(t) + ρ(1 + ρT )− 2δ(t − T )]

i.e. to sell a finite amount at time t = 0, then selling at a constant rate for the whole

interval (0,T ) and finally buying a finite amount at time t = T .
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Solution in discrete time

Whenever more constraints are added to the optimal execution problem, it is convenient to frame

the problem in discrete time. This can be done at three different levels

1 express the cost function in discrete time and solve the optimization;

2 use discrete time to obtain a quadrature of the integral equation;

3 write the Transient Impact Model in discrete time, derive the corresponding cost, and then

minimize it.

It is worth noticing that the three procedures do not give exactly the same result, however if the

time intervals used in the discretization are sufficiently small, the differences become negligible. In

the following we will consider approach (3).
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Transient Impact Model in discrete time

Let us divide the interval [0,T ] in N equal intervals and define τ = T/N.

The strategy is now a vector x = (x1, ...., xN )′, where xi is the amount of shares traded in

interval i , i.e. for t ∈ [(i − 1)τ, iτ ].

The price dynamics of a sell execution in discrete time is

S` = S0 − k
∑̀
i=1

G(`− i)xi + τ1/2
∑̀
i=1

ε` ` = {0, ...,N} (22)

which can be rewritten in vector form as

S = S01− kGx + τ1/2Lε (23)

where S = (S1, ..., SN )′, 1 = (1, ..., 1)′, L is the lower triangular matrix of ones (i.e. Lij = 1 if

i ≥ j , zero otherwise), and G is the lower triangular matrix such that Gij = G [τ(i − j)] if

i ≥ j and zero otherwise.

Finally ε ∼ N (µ,Σ) is a Gaussian random vector describing the price dynamics without

execution.
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General VWAP

In full generality, we consider a VWAP benchmark between t = T1 and t = T2,

corresponding to `1 = bNT1/Te `2 = bNT2/Te are the rounding to the nearest integer

giving the initial and final trading intervals.

We introduce B = {` ∈ N : `1 ≤ ` ≤ `2} and a vector η with components

η` =
V`

||η||1
I`∈B (24)

where V` is the market volume traded in interval `.

The benchmark is x0η
′S and the normalization ensures that 1′η = 1.

The utility function is U [(x− x0η)′S] and, using the Gaussian assumption under CARA

utility function with risk aversion 2γ, the expected utility is

U[x] = E0[(x− x0η)′S]− γV0[(x− x0η)′S] (25)
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Proposition

Under CARA utility function with risk aversion 2γ, the optimal VWAP execution, which

maximizes the expected utility, is the solution of the quadratic optimization

min
x

[
x′Ax− b′x

]
s.t. 1′x = x0

where

A = kG + γτLΣL′ (26)

b′ = kx0η
′G + 2γτx0η

′LΣL′ + τ1/2µ′L′ (27)

Moreover, the matrix A is positive definite if Σ is positive definite. Thus the solution of the

quadratic optimization exists and is unique.

Since the problem can be recast in a quadratic optimization form, several additional constraints

can be added without affecting the difficulty of the problem.

For example, it is possible to add the constraint that all the trades have the same sign, e.g. no

buys in a sell execution (xi ≥ 0, ∀i), or a constraint on the maximal trading speed

(|xi | ≤ xmax ,∀i).
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Figure: Optimal trading schedule for a VWAP with benchmark interval coincident with the trading interval.

The price is without drift and the broker is risk neutral. The red dots refer to the unconstrained case, while the

blue ones to the case with a constraint on the non-negativity of trades (no buys for a sell execution).
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Role of drift and risk aversion
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Figure: Left. Optimal VWAP schedule for a sell order by a risk neutral broker for different values of the price

drift µi = 4 (cyan), µi = 2 (blue) µi = −2 (red), and µi = −4 (magenta). Black dots refer to the driftless

benchmark case. Right. Optimal VWAP schedule for a risk averse broker under driftless price. The values of

the risk aversion parameter γ are 0 (black), 0.5 (red), 1 (green), 3 (blue), 7 (cyan), 100 (magenta). In both

panels the benchmark interval is coincident with the trading interval.
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When the benchmark interval does not coincides with the trading interval
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Figure: Optimal schedule without (red) and with (blue) constraint on trade sign for a VWAP with benchmark

interval T1 = 25 and T2 = 38 (vertical lines).
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Figure: Excess profit of the broker for a VWAP execution with benchmark interval different from trading

interval. The left panel shows the profit as a function of the length of the benchmark period when it is centered

in T/2. The right panel shows the profit as a function of the time within the trading period when the

benchmark period has unit length.

The excess profit (the difference between the cash at the end of the trading period and the

VWAP in the benchmark period) is maximal for a benchmark period of length one and located in

the second half of the trading interval (assuming the impact model continues to hold also for the

very large trading intensities).
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